Dihedral Angles in Texturally Equilibrated Rocks

Solid materials

A summary of the published values for solid-solid-solid dihedral angles of geological relevance is presented in Table 4, with an indication of whether the results are the medians of populations of apparent angles measured on 2-D sections or whether they pertain to true 3-D values. Angle populations in single-phase materials have a median value of 120˚ (the only possible result when all three angles at each triple junction are included), with a range dependent on the extent of anisotropy of grain boundary energy (e.g. Kruhl, 2001; Leibl et al., 2007). For two-phase junctions, angle distributions tend to have a standard deviation in the region of 10-15˚.

Table 4. Solid-solid-solid equilibrium dihedral angles of geological relevance

Phases Median dihedral angle Range of true angles Reference
Sphalerite-galena-galena 134°   Stanton (1964)
Sphalerite-galena-galena 111 – 128°   Lusk et al. (2002)
Chalcopyrite-sphalerite-sphalerite 130°   Stanton (1964)
Pyrrohtite-sphalerite-sphalerite 102 – 114°   Lusk et al. (2002)
Galena-sphalerite-sphalerite 133°   Stanton (1964)
Galena-sphalerite-sphalerite 27 – 111°   Lusk et al. (2002)
Quartz-orthoclase-orthoclase   52 – 149° Vernon (1968)
Quartz-plag-plag   79 – 139° Vernon (1968)
Quartz-plag-plag 106°   Hiraga et al. (2002)
Quartz-garnet-garnet   43 – 138° Vernon (1968)
Quartz-calcite-calcite   68 – 146° Vernon (1968)
Quartz-apatite-apatite   35 – 107° Vernon (1968)
Plag- quartz-quartz   71 – 158° Vernon (1968)
Plag-quartz-quartz 117°   Hiraga et al. (2002)
Plag-hornblende-hornblende   27 – 149° Vernon (1968)
Plag-hornblende-hornblende   55 – 163° Vernon (1970)
Plag-augite-augite   57 – 170° Vernon (1968)
Plag-augite-augite   30 – 159° Vernon (1970)
Orthoclase-garnet-garnet   38 – 132° Vernon (1968)
Garnet-quartz-quartz   90 – 180° Vernon (1968)
Garnet-orthoclase-orthoclase   94 – 165° Vernon (1968)
Hornblende-augite-augite   83 – 180° Vernon (1968)
Hornblende-plag-plag   46 – 180° Vernon (1968)
Hornblende-plag-plag   62 – 162° Vernon (1970)
Augite-plag-plag   72 – 150° Vernon (1968)
Augite-plag-plag   52 – 155° Vernon (1970)
Augite-olivine-olivine 79°   Toramaru & Fujii (1986)
Augite-orthopyroxene-orthpyroxene 86°   Toramaru & Fujii (1986)
Orthopyroxene-olivine-olivine 106 – 114°   Fujii et al. (1986)
Orthopyroxene-olivine-olivine 91°   Toramaru & Fujii (1986)
Orthopyroxene-augite-augite 113.5°   Toramaru & Fujii (1986)
Olivine-orthopyroxene-orthopyroxene 119 – 122°   Fujii et al. (1986)
Olivine-orthopyroxene-orthopyroxene 117°   Toramaru & Fujii (1986)
Olivine-augite-augite 129°   Toramaru & Fujii (1986)
Ilmenite-orthoclase-orthoclase   92 – 162° Vernon (1968)
Calcite-quartz-quartz   98 – 152° Vernon (1968)
Apatite-quartz-quartz   87 – 180°  

The sensitivity of equilibrium angles to pressure and temperature has been little studied. The population of true equilibrium dihedral angles in quartz aggregates (the quartz-quartz-quartz angle) is not sensitive to temperature (Kruhl, 2001), whereas the median of equilibrium two-phase (apparent) dihedral angles in sulphides (e.g. at sphalerite-galena-galena junctions) decreases significantly with increasing temperature, with potential use as a geothermometer (Stanton and Gorman, 1968; Lusk et al. 2002).

Melt-bearing materials

A summary of the published values for melt-solid-solid dihedral angles of relevance to melt-bearing rocks is given in Table 5. Most of the published measurements have been made on 2-D sections; the reported values for these studies are the medians of the measured population. Only two studies to date have reported measurements of true 3-D angles (Cmíral et al. 1998, Holness, 2006). Typical frequency distributions of the true 3-D angles are shown in Figure 3.

Table 5. Melt-solid-solid equilibrium dihedral angles of geological relevance

solid melt Range of median angles Median of true 3-D angles source
quartz Dry Silicic 60°   Jurewicz & Watson (1984)
quartz Dry silicic 59°   Jurewicz & Watson (1985)
quartz Hydrous silicic melt 12 – 18°   Laporte (1994)
quartz Hydrous silicic melt 34 – 58°   Holness (1995)
quartz rhyolite   19°, s.d. 9.7° Holness (2006)
feldspar Dry silicic 44°   Jurewicz & Watson (1985)
plagioclase Anorthositic melt 45°   Longhi & Jurewicz (1995)
feldspar silicic 41 – 54°   Gleason et al. (1999)
feldspar silicic   28.5°, s.d. 12.2° Laporte & Provost (2000)
plagioclase basalt   26°, s.d. 11.6° Holness (2006)
plagioclase rhyolite   24°, s.d. 11.5° Holness (2006)
plagioclase Inninmorite (64 wt.% SiO2)   23°, s.d. 10.2° Holness (2006)
leucite tephrite   20°, s.d. 10.9° Holness (2006)
silicate Fe-Ni-S alloy 99 – 125°   Shannon & Agee (1996)
perovskite Fe melt 51 – 94°   Takafujii et al. (2004)
perovskite Fe-O-S liquid 79 – 102°   Terasaki et al. (2007)
perovskite Fe-Si alloy 130 – 140°   Mann et al. (2008)
olivine Fe-Ni-S alloy 60 – 93°   Minarik et al. (1996)
olivine Fe-Ni-S-O melt 96 – 106°   Holzheid et al. (2000)
olivine Fe-S alloy 66 – 106°   Terasaki et al. (2005)
olivine Fe-O-S alloy 54 – 98°   Terasaki et al. (2008)
olivine basalt 47°   Waff & Bulau (1979)
olivine basalt 41 – 47°   Fujii et al. (1986)
olivine basalt 49°   Toramaru & Fujii (1986)
olivine basalt 0 – 10°   Cmíral et al. (1998)
olivine basalt   29°, s.d. 12.7° Holness (2006)
olivine "silicate melt” (basalt°) 0 – 45°   Yoshino et al. (2009)
olivine picrite   29°, s.d. 9.0° Holness (2006)
olivine carbonatite 28°   Hunter & McKenzie (1989)
olivine carbonatite 23 – 36°   Watson et al. (1990)
olivine carbonatite 25 – 30°   Minarik & Watson (1995)
olivine Si-rich mantle melt 50°   Maumus et al. (2004)
olivine phonolite   29°, s.d. 11.9° Holness (2006)
olivine komatiite 32 – 33°   Jurewicz & Jurewicz (1986)
olivine komatiite 29 – 33°   Walker et al. (1988)
hornblende Silicic melt 25°   Laporte & Watson (1995)
hornblende Granitic melt 53 – 58°   Lupulescu & Watson (1999)
hornblende Tonalitic melt 46 – 48°   Lupulescu & Watson (1999)
biotite Silicic melt 23 - 39   Laporte & Watson (1995
augite basalt 98°   Toramaru & Fujii (1986)
diopside Diopside-anorthite melt 33 – 60°   Ikeda et al. (2002)
augite Inninmorite (64 wt.% SiO2)   38°, s.d. 13.4° Holness (2006)
augite phonolite   37°, s.d. 14.8° Holness (2006)
augite basalt   37.5°, s.d. 13.0° Holness (2006)
orthopyroxene basalt 52 – 70°   Fujii et al. (1986)
orthopyroxene basalt 76°   Toramaru & Fujii (1986)
orthopyroxene basalt 20 – 40°   Von Bargen & Waff (1988)
chromite Sulphide liquid 41 – 53°   Brenan & Rose (2002)

Figure 3. Texturally equilibrated melt-solid-solid dihedral angles

Texturally equilibrated melt-solid-solid dihedral angles

Frequency distributions of true dihedral angles measured for texturally equilibrated natural examples of rapidly quenched melt-bearing systems. From Holness (2006).


The variation of the liquid-solid-solid equilibrium dihedral angle with pressure, temperature and fluid composition is controlled by the layer of adsorbed species on the interfaces (Holness, 1993; Brenan and Rose, 2002; Takei and Shimizu, 2003). In general, the higher the extent of surface activity the more sensitive is the equilibrium angle to changes in pressure and temperature (Holness, 1993; Holness and Graham, 1995).

If the liquid has a similar composition and structure to the solid then the energy of the liquid-solid interface, and thus the dihedral angle, is low. The smallest angles are generally found in single component systems such as ice-water (Walford and Nye, 1991; although see Mader (1992)) or systems with very high solubility of the solid phase (e.g. sucrose-H2O, Pharr and Ashby, 1983; NaCl-H2O ice, Spetzler and Anderson, 1968; olivine-H2O at high pressure, Yoshino et al, 2007). In simple binaries, the dihedral angle is a function of temperature (and thus liquid composition), with the lowest angles when the liquid composition is closest to that of the solid phase (Takei, 2000; Ikeda et al., 2002; Takei and Shimizu, 2003).

Conversely, the highest angles occur where the solid and liquid have the most disparate compositions and structures. Examples of the latter include argon-calcite, argon-quartz, CO2-quartz (Holness 1993), metal-olivine (see list of references in Table 5). Fe-S liquids in silicate matrices also have generally high dihedral angles (e.g. Ballhaus and Ellis, 1996; Minarik et al., 1996; Gaetani and Grove, 1999; Terasaki et al., 2007; again see Table 5 for a more comprehensive list) although these are sensitive to changes in oxygen fugacity and pressure (Gaetani and Grove, 1999; Rose and Brenan, 2001; Takafuji et al., 2004; Terasaki et al. 2008).