- Home
- Journal
- 2017 -- 50, 51
- 2016 -- 49, 50
- 2015 -- 48
- 2014 -- 46, 47
- 2013 -- 44, 45
- 2012 -- 40, 41, 42, 43
- 2011 -- 37, 38, 39
- 2010 -- 35, 36
- 2009 -- 31, 32, 33, 34
- 2008 -- 28, 29, 30
- 2007 -- 25, 26, 27
- 2006 -- 21, 22, 23, 24
- 2005 -- 18, 19, 20
- 2004 -- 14, 15, 16, 17
- 2003 -- 10, 11, 12, 13
- 2002 -- 6, 7, 8, 9
- 2001 -- 3, 4, 5
- 2000 -- 1, 2
- Editorial Board
- Policies
Numerical modeling of the development of kink-bands in anisotropic plastic materials
Abstract:
Kink-bands and associated kink folds are common structures in layered or foliated rocks. Their presence indicates that the dominant rheology of rocks was of anisotropic plasticity. We apply the commercial finite difference code FLAC and supplemental programs that we developed to address an outstanding problem of kink-band formation, namely what controls the onset and subsequent development of kink-bands. We use Mohr-Coulomb solid with an embedded planar anisotropy to simulate well-layered rocks. When subjected to anisotropy-parallel shortening, two competing deformation mechanisms are observed and their relative significance depends on the ratio (
DOI:
10.3809/jvirtex.2004.00091