References

Bodislitsch, B., Koeberl, C., Master, S., and Reimold, W. (2005). Estimating duration and intensity of neoproterozoic snowball glaciations from ir anomalies‘. Science, 308:239–242.

Christie-Blick, N., Sohl, L., and Kennedy, M. (1999). Considering a neoproterozoic snowball earth. Science, 284.

Evans, D. (2000). Stratigraphic, geochronological, and paleomagnetic constraints upon the neoproterozoic climatic paradox. American Journal of Science, 300(5):347–433.

Giddings, J. (2005). Neoproterozoic oceans and climate change: insights from sedimentary carbonates. Con-firmation Report.

Harland, W. (1964). Evidence of late precambrian glaciation and its significance. In Nairn, A., editor, Problems in Paleoclimatology, pages 119–149. J. Wiley.Embleton, B. and Williams, G. (1986). Low paleolatitude of deposition for late precambrian periglacial varvites in south australi: implications for paleoclimatology. Earth and Planetary Science Letters, 79:419–430.

Hoffman, P., Kaufman, A., Halverson, G., and Schrag, D. (1998b). A neoproterozoic snowball earth. Science, 281:1342–1346.

Hoffman, P. and Schrag, D. (2002). The snowball earth hypothesis; testing the limits of global change. Terra Nova, 14(3):129–155.

Kaufman, A., Knoll, A., and Narbonne, G. (1997). Isotopes, ice ages, and terminal proterozoic earth history. Proceedings of the National Academy of Science, 94:6600–6605.

Kennedy, M. (1996). Stratigraphy, sedimentology, and isotopic geochemistry of australian neoproterozoic postglacial cap dolostones; deglaciation, delta13C excursions, and carbonate precipitation. Journal of Sedimentary Research, 66(6):1050–1064.

Kennedy, M., Runnegar, B., Prave, A., Hoffman, K., and Arthur, M. (1998). Two or four neoproterozoic glaciatio