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Introduction
The Alps and the Apennines are two mountain ranges

in Italy that belong to the central-western Mediterranean
region. For a long time, differences and transition be-
tween the two ranges, both at least partially facing to the
Po Plain, have been discussed considering them as inde-
pendent geological domains. On the contrary, they repre-
sent part of a continuous Alpine orogenic system derived
from a complex space-time interaction between the two
major European and African plates, and intervening oce-
anic domains and minor microcontinents. Past and
present-day geological features of the Alps/Apennines
junction area show structures and sedimentation history
associated with complex interfering processes developed
during the successive stages of growth of the different
segments of the orogenic system related with subduction
frames which changed and reversed during time.

The relationships between the Western Alps and the
Northern Apennine represent, therefore, a classical and
still debated problem in the geology of the Central Medi-
terranean which finds in the NW parts of the Italian pen-
insula a topical ground of discussion.

In particular for the junction area, the following gen-
eral aspects are worth pointing out:

- presence of tectonic units with similar lithostrati-
graphic features and comparable structural evolution;

- at least in part coeval age of tectonic events and de-
formations;

- superficial continuities of tectonic units across the
Western Alps/Northern Apennine boundary.

These features were partially derived from a paleo-
geographic heritage of the Alpine and Apenninic realms
which were laterally continuous and shared the rifting
and the drifting stages of the Ligurian Tethys (Elter 1975;
Piccardo 1977; Laubscher and Bernoulli 1977; Stampfli
et al. 1998; Manatschal and Bernoulli 1999; Rampone
and Piccardo 2000; Lemoine et al. 2001; Piccardo this
volume), the ocean which during the Late Mesozoic sep-
arated paleoEurope from the southern paleocontinent
Adria/Apulia (the “Africa promontory” of Argand 1924).
The diachronous closure of this ocean (Dal Piaz 1974;
Hunziker and Martinotti, 1984; Laubscher, 1988; Dewey
et al. 1989; Polino et al. 1990; Stampfli et al. 1998; Le-
moine et al. 2001; Michard et al. 2002; Schmid et al.
1996, 2004; Beltrando et al., 2010 and references; Dal
Piaz this volume) during Cretaceous to Eocene and the
following Oligocene/Miocene Europe/Adria collision

characterized the evolution of the Alps and the early
stages of evolution of the Apennines, while the opening
of the Provençal basin in the Oligocene and that of the
Tyrrhenian sea from the Middle Miocene (in the wake of
retreating Adria subduction) represent the key events of
the Apenninic evolution (Elter et al. 1975; Laubscher
1971, 1988; 1991; Scandone 1979; Doglioni 1991; Rose-
nbaum and Lister, 2004; Schettino and Turco, 2006, Arg-
nani, 2009).

The dynamic evolution of the orogenic system(s) and
the geometric and kinematic interactions between the two
chains are problems still under investigation.

Presently, two opposite contrasting interpretative
models are under debate (for a more detailed overview
see Molli, 2008 and Vignaroli et al. 2008):

1) According to some authors, the Alps and the Apen-
nines are related to two coeval and opposite-dipping sub-
duction (east-vergent or “alpine” and west-vergent or
“apenninic”) active since Late Cretaceous. Major objec-
tions to this interpretation concern the structures and evo-
lution of Alpine Corsica and the recognition of the boun-
dary element(s) between the Alps and the Apennines;

2) Alternatively, diachronous east-vergent “alpine”
subduction (Late Cretaceous-Middle Eocene) was fol-
lowed by west-vergent apennine (Late Eocene-onward)
subduction. Subduction flip and complex space and time
interactions between only partially independent orogens
characterize this group of models. The timing, way and
causes for reversal of subduction represent major points
of discussion.

The present models of the Alps/Apennines relation-
ships derive from more than one century of research
which will be briefly outlined hereafter to provide a his-
torical perspective on the treated problem (see Gelati and
Pasquarè, 1970; Castellarin, 1994; 2001 for a more com-
plete historical presentation).

In the 19th century the topic was principally faced
from a lithologic point of view highlighting the presence
of mainly metamorphic rocks as characteristic of the
Alps, in contrast to widespread exposures of sedimentary
rock-types in the Apennines. In this frame the Sestri/Vol-
taggio line (east of Genoa) was soon recognized as the
possible surface boundary between the two chains. With
the recognition of nappe architecture for the Alps (Ar-
gand, 1924) some authors suggested also the identity of
some structural elements in the two orogens (Pennidic
domain of the Alps correlated with metamorphic units
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exposed in some tectonic windows in the Northern Apen-
nine e.g. Staub, 1933). Subsequently, structural elements
such as folds and orogen-scale vergences, together with
large scale geometry and general lithostratigraphic fea-
tures, were quoted as the main distinction between the
two chains. In particular it was pointed out that western
vergences are characteristic of the Alps, whereas the op-
posite i.e. eastern vergences can be observed in the Apen-
nines.

The contributions of Elter et al. (1966); Laubscher
(1971), Scholle (1970), Boccaletti et al. (1971), Haccard
et al. (1972); Sturani (1973), Elter and Pertusati (1973),
Dal Piaz (1974), Debelmas (1975), Alvarez et al. (1974)
and Grandjacquet and Haccard (1977) were the first to
analyze in modern terms the relationships between the
western Alps and the Northern Apennine, laying the basis
for present research on the subject.

In the 80’s, papers by Treves (1984) and Principi and
Treves (1985), expanding on former propositions of
Scholle (1970) and Scandone (1979), presented the inter-
pretation of the Apennine as an accretionary wedge and
suggested the presence of a wide east-west-striking, dis-
tributed zone of deformation north of the Voltri Massif.
For the authors this domain accomodates the displace-
ment between the opposite-dipping Alpine (i.e. eastward)
and Apenninic (i.e. westward) subduction zones, drawing
a direct comparison with the present convergent setting
of New Zealand.

Laubscher (1988, 1991), Polino et al. (1992); Schu-
macher and Laubscher (1996); Polino et al. (1994); Piana
(2000); Mosca et al. (2009) underlined the nature of the
problem for the boundary between the Alps and the
Apennines in its 3D-kinematics.

Doglioni (1991), Doglioni et al., (1998) and Carmi-
nati et al., (2004) make an overall comparison fore-
grounding the general distinct characters of the two
chains in terms of both geological and geophysical ex-
pression and the different positions of basal décollement,
very deep in the Alps and more shallow in the Apen-
nines. These general features are related to the deep ge-
ometry of underlying subduction following or opposing
the “eastward” undulated mantle flow (Doglioni et al.,
1999). Within this general model they underlined the
problem in terms of the time interference between the
southern prolongation of the Alps and the Apennines,
with incorporation of segments of the former in the inner

side of the latter, although no detailed analyses or
definition of the boundary problems were ever attempted.

The surface boundary between the Alps and Apen-
nines has been traditionally placed along the Sestri Vol-
taggio Zone or the Sestri Voltaggio Line (Cortesogno et
al., 1979; Cortesogno and Haccard, 1984; Hoogerdujn
Strating, 1991). The Sestri Voltaggio Zone is a km-wide
north-south oriented structural domain which includes
different metamorphic tectonic units in contact with un-
metamorphic units (historically ascribed to the Northern
Apennine). Several interpretations for this structural do-
main have been proposed. The Sestri Voltaggio line was
interpreted as a transform fault kinematic boundary be-
tween Alps and Apennine (Scholle, 1970; Elter and Per-
tusati, 1973; Sturani, 1973; Ten Haaf, 1975), as a thrust
fault, which juxtaposes rocks from different crustal levels
(Cortesogno and Haccard 1979, Cortesogno and Haccard,
1984; Capponi, 1991; Castellarin, 1994), as a dextral
strike-slip fault (Giglia et al., 1996, Crispini 1996, Crisp-
ini and Capponi 2001) or transpressional oblique-slip
fault (Spagnolo et al. 2007, Crispini et al. 2009) and ex-
tensional detachment (Hoogerdujin Strating, 1991; 1994;
Vignaroli et al., 2008; 2009). Miletto and Polino (1992)
considered the Sestri/Voltaggio zone a major backthrust
zone of Alpine units above Apenninic ones. Crispini
(1994); Crispini and Capponi (2001); Capponi and Crisp-
ini (2002); Crispini et al. (2009) describe the details of
the tectonics of the zone and suggest an evolving struc-
tural significance from early nappe contacts to the more
recent Oligo-Miocene age shallow crustal reactivations.

Sturani (1973) and Elter and Pertusati (1973) were the
first to point out that whatever was the original signifi-
cance of the Sestri-Voltaggio Zone, the sealing of the
basal Tertiary Piemonte Basin (TPB) on the internal
structures of the Sestri Voltaggio zone, the Ligurian Alps
and parts of the Ligurian units implies a subordinate role
of the Sestri-Voltaggio zone in the Alps/Apennines kine-
matics. They also indicated in the Villalvernia-Varzi-Ot-
tone-Levanto line (Elter and Pertusati, 1973) the kine-
matic boundary between metamorphic and unmetamor-
phic units originally part of the pre-Late Eocene Alpine
orogen (dominated by western vergences) and other Lig-
urian units with “only Apenninic eastward” history. They
firstly introduced the idea of a complex interference be-
tween two evolving orogenic systems.

Relations between the Western Alps and the Northern
Apennines are deeply related with another classical issue

Journal of the Virtual Explorer, 2010
Volume 36

Paper 10
http://virtualexplorer.com.au/

Geology of the Western Alps-Northern Apennine junction area: a regional review Page 4



in Alpine geology, the origin of the tight curvature of the
Western Alps, a crucial point for any kinematic restora-
tion and paleogeographic reconstruction on the inner side
of the Alpine belt (e.g. Gougel, 1963; Laubscher, 1971;
Debelmas, 1986; Giglia et al., 1996; Schmid and Kis-
sling, 2000). The main question, faced in different contri-
butions (e.g. Argand, 1916; Gougel, 1963; Laubscher,
1971; Debelmas, 1972; Elter and Pertusati, 1973; Debel-
mas, 1986; Malavieille et al., 1984; Chouckroune et al.,
1986; Ricou and Siddans, 1986; Laubscher, 1988; Lacas-
sin, 1989; Vialon et al., 1989; Platt et al., 1989; Hooger-
dujin Strating et al., 1991; Vanossi et al., 1994; Giglia et
al., 1996; Schmid and Kissling, 2000; Ford et al., 2006)
is whether the shape of the Western Alps arc simply de-
rives from a torsion superimposed on a more linear chain,
or it reflects an inherited pre-collisional physiography lat-
er tightned during the Alpine orogeny.

Geological setting and deep structures
Any attempt to analyze the relationships between the

Western Alps and the Northern Apennines implies a defi-
nition and understanding of the present geometries and
tectonic setting of various geological domains as well as
the successive kinematic stages of retrodeformation of

structures only locally directly observable (Laubscher,
1971; Elter and Pertusati, 1973; Laubscher 1988; 1991;
Polino et al., 1993; Schumacher and Laubscher, 1996;
Mosca et al., 2009 and references therein).

As a matter of fact, the junction area between the two
chains includes three major geomorphological domains
(Figs. 1-4), each largely composite from a geological
point of view, corresponding to:

- a south-western undersea region, the Ligurian Sea --
belonging to the Liguro-Provençal basin and to the
Northern Tyrrhenian sea--;

- an “S-shaped” mountain range formed by the Cot-
tian-Maritime, Ligurian Alps and the northern sector of
the Apennines;

- a north-eastern region comprising former exhumed
sectors of the orogenic belt partially subsided during Oli-
gocene-Miocene (to form the so-called Tertiary Piemonte
basin) and during the Neogene to form foredeep basins
resting on Adria Mesozoic carbonate successions and
covered by thick alluvial sediments of the present Po
plain.

Structures in all the three geological domains record,
at different degrees, the interfering relationships between
two growing and evolving orogens as described below.

Figure 1. Relief image of north west Italy and adjacent region.

(after Wikipedia commons; http://commons.wikipmedia.org.wiki). AL, Alessandria basin; La, Langhe hills; MO, Monferrato
hills;, SV, Savigliano plain; TH, Torino, hills.
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Figure 2. Tectonic map of Western Alps/Northern Apennine junction area, with inset of the main structural domains of the
system.

In the inset: CMA Cottian-Maritime Alps; LA Ligurian Alps, NA Northern Apennine; LPB Liguro-Provençal basin (dark blue
oceanic crust); NTS Northern Tyrrhenian sea. In the map the main tectonic and lithostratigraphic units of the system are
shown. For the Western Alps: (1,2) Europe-derived external Alpine units and external part of Corsica. 1) Alpine foreland
units; (2) External massifs (Ar, Argentera and P, Pelvoux); (3) Middle Penninic Briançonnais nappes in the Alps and the
Tenda unit in Corsica (4) Middle Penninic Internal Massif (DM, Dora Maira and GP, Gran Paradiso); (5) Upper Penninic
Helminthoid Flysch: UE, Ubaye-Embrunais, Western Liguria Helminthoid Flysch (WL) and the Antola unit (A). With the

same color are also represented the ophiolitic non-metamorphic unit of Chenaillet (Ch) and Sestri Voltaggio Zone (SVZ)
and in Corsica Balagne (Ba), Nebbio (Ne) and Macinaggio (Ma) units; (6) Schistes Lustrés composite nappe system; (7)
Sesia and related units (“lower Austroalpine nappes”); (8) Adria lower crust of the Southern Alps (Ivrea); (9) Adria upper

crust basement and cover of the Southern Alps; Northern Apennine: (10) Internal Ligurian units, IL; (11) External Ligurian
units (EL) and SubLigurian (Canetolo) units; (12, 13, 14) Adria-derived Tuscan and external foreland Umbria-Marche units;
(12) Tuscan nappe; (13) Tuscan metamorphic units; (14) Cervarola and Umbria-Marche foreland units; (15) Post-tectonic
cover of Tertiary Piemontese basin and Epiligurian units; (16) Neogene and Quaternary sediments of Po Plain and inner
Tuscany (17) Magmatic rocks of Southern Tuscany, volcanic and intrusive bodies; major thrusts at surface (18) and in

subsurface (19); (20) high angle normal and trascurrent faults; (21) sediment thickness in seconds TWTt for the Tyrrhenian
Sea; (22) Pliocene isobaths (in Km) in the Po Plain and Adriatic sea.
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Figure 3. Map of crust-mantle configuration of the Western Alps/Northern Apennine junction area.

Contour intervals of 2 Km. Dashed lines indicate the limits between the European (E), Adriatic (A) and Ligurian-Tyrrhenian
(L-T) Mohos. The Ivrea geophysical body is also reported. From Lanza, 1984; Laubscher, 1988; Cassinis et al., 2002,

Waldhauser et al., 1998; Schmid and Kissling, 2000; Scafidi et al., 2009 and references therein.

The 3D Moho configuration of the junction area (Fig.
3) also reflects this complex evolution and it is character-
ized by three Moho sub-interfaces (Solarino et al., 1997;
Waldhauser et al., 1998; Dezes and Zigler, 2002; Cassi-
nis et al., 2002; Scafidi et al., 2009): the European Moho,
southward dipping; the Adriatic Moho, characterized by
updoming below the Po plain, shallow northward dip in
the north and a southward underthrusting below the
Apennines; the Ligurian Moho located at shallow depth
beneath the Ligurian sea and the Apennines with a slight-
ly north-dipping attitude and further south, the Tyrrheni-
an Moho.

A significant element in the deep structure of the area
is represented by the Ivrea body (Fig.3), which is geo-
physically defined as having: high density and magnetic
susceptibility, seismic velocity and positive Bouger
anomaly corresponding to material of lower crust or up-
per mantel origin (Lanza, 1984; Solarino et al., 1997;
Scafidi et al., 2009). This is in agreement with its surface
correlative represented by ultramaphic rocks of lower
crustal and upper mantle origin exposed just south of the
Insubric line in the Central Alps (Lanza, 1984; Solarino
et al., 1997; Ford et al., 2006; Schmid and Kissling,
2000; Schmid et al., 1996; Scafidi et al., 2009).
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Figure 4. Age of the main geological events in the domains of the of Western Alps/Northern Apennine junction area.
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TM units: Tuscan Metamorphic units; T, U-M, R units: Tuscan, Umbro-Marche and Romagna units.

JVE subscribers can download a full size version of figure 4 at http://virtualexplorer.com.au/article/2010/215/apennine-
alps/media/figure04-full.png.

The south-western domain: the Liguro-
Provençal and Northern Tyrrhenian basins

The south-western domain includes an undersea re-
gion geologically belonging to two different provinces:
the Liguro-Provençal basin and the northern part of the
Tyrrhenian basin (Fig.1,2,4).

Both basins are presently interpreted by most authors
(for alternative views see Boccaletti et al., 1982) as Late
Oligocene to Miocene back-arc basins developed in rela-
tionships with Apulian westward subduction and east-
ward slab retreat (Patacca and Scandone, 1989; Doglioni,
1991). These basins are therefore parts of the Northern
Apennine geodynamic system, since they developed dur-
ing its successive stages of evolution (Gueguen et al.,
1998; Faccenna et al., 1998).

The rifting stages in the Liguro-Provençal basin are
dated to Oligocene to Early Miocene (Aquitanian–early
Burdigalian) and are associated with important calcalka-
line magmatism on land (Lustrino et al., 2008). The

following oceanic spreading (drifting stage) occurred in
the Burdigalian (19–16 Ma) with formation of an atypical
oceanic crust (Gueguen et al., 1998; Fanucci and Morelli,
2003; Rollet et al., 2002) characterized by discontinuous
tholeitic volcanic edifices settled within the exhumed
mantle, related with slow-to very slow (less than 1-2 cm/
yr) tectonically controlled oceanic spreading (Chamot-
Rooke et al., 1999; Rollet et al., 2002). The drifting stage
and oceanic accretion were associated with the anticlock-
wise Corsica-Sardinia block-rotation of 30° (Speranza et
al. 2002; Maffione et al., 2008) or 45-50° (Gattacceca et
al., 2007). The rotation occurred after Aquitanian and
was essentially completed at about 15 Ma according to
Gattacceca et al. (2007). A third of the total amount of
rotation occurred at a rate of c.15°/Ma between 20.5 and
18 Ma (Rehault et al., 1986; Gattacceca et al., 2007)

It is important to notice that the (trans-) extensional
processes of the Liguro-Provençal basin partially occur-
red in an area previously forming the external southern
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zone of the Pyreneean range (whose north-westward con-
tinuation is not well defined) where orogeny had stopped
c.10 Myr earlier (Seranne 1999; Lacombe and Jolivet
2005).

The present day tectonic activity of the western part of
the domain (westernmost part of Liguro-Provençal basin)
is characterized by contractional reactivations of previ-
ously developed extensional structures in relationship
with ongoing tectonics of the southwestern Alps (e.g.
Eva and Solarino, 1997; Bigot Cormier et al., 2006; Sue
et al., 2007; Larroque et al., 2009).

The south-eastern segment of the domain geologically
belongs to the Northern Tyrrhenian Sea which separates
the Northern Apennine from Corsica and is subdivided
into two main parts (Figs. 2 and 4): a western domain—
the Corsica basin—and an eastern one— the Tuscan
shelf, separated by the north–south elongated Elba–Pia-
nosa Ridge (Bartole et al. 1991; Carmignani et al. 1995;
Mauffret and Contrucci 1999; Pascucci et al. 1999; Cor-
namusini et al. 2002).

The north/south structures are poorly defined in their
northern prolongation and the general structural trends
turned to north-west/south-east in the eastern Ligurian
sea. The major structure in the eastern side is represented
by the Plio-Quaternary Viareggio basin (Fanucci and
Nicolich, 1984; Bernini et al., 1990; Argnani et al., 1997)

The Northern Tyrrhenian Sea developed since early
Middle Miocene with the rifting of the half-graben of the
Corsica basin and then since Late Tortonian (Middle–
Late Miocene) with the rifting of the eastern part of the
Tuscan shelf.

The formation of Miocene and younger basins was as-
sociated with magmatism which also shows an eastward-
younging trend between Middle Miocene and Quaterna-
ry. Sisco lamproites (alkaline sills) in eastern Corsica
represent the oldest magmatic rocks (15–13.5 Ma), while
intermediate age magmatism (7.3–2.2 Ma) characterizes
the intrusive and volcanic bodies of the Tuscan Archipe-
lago and Central Tuscany (e.g. Capraia, Elba, Giglio, Or-
ciatico, Montecatini Val di Cecina). The easternmost and
recent (1.3–0.1 Ma) magmatism can be found in the Tus-
can–Latium area at Mt. Cimini, Mt. Vulsini, Mt. Amiata
and Larderello (Civetta et al. 1978; Lavecchia and Stop-
pa 1990; Serri et al. 1993; Musumeci et al. 2002; Rose-
nbaum and Lister, 2002; Conticelli et al., 2009 and this
volume).

The “S-shaped” mountain range

The junction area between the Alps and the Apen-
nines includes an “S-shaped” mountain range formed by
the Cottian and Maritimes Alps (the southern part of
Western Alps), the Ligurian Alps and the northern sector
of the Apennines (Fig.2).

The Cottian and Maritime Alps (CMA)
The Cottian-Maritime and the Ligurian Alps consist

of several tectonic units that can be stratigraphically re-
ferred to the major paleogeographical domains of the
western Tethys. From WSW to ENE they are the Europe-
an continental margin; the Briançonnais/sub-Briançon-
nais domains (distal part of the European continental
margin or independent terrane according to different in-
terpretations e.g. Lemoine et al., 2001 ; Stampfli et al.,
1998 ; Schmid et al.1996, 2000) and finally the Ligurian
oceanic realm.

The external zones of the orogen in the Cottian and
Maritime Alps are exposed west of the Frontal Briançon-
nais Fault (FBF). They comprise a foreland thrust sys-
tem, forming the Digne and Castellane-Nice arcs, which
consist of Eocene-Oligocene foreland basin sequences
floored by thick Mesozoic carbonates of the Dauphinois
domain (Sinclair, 1996; Ford et al., 1999). These sedi-
ments lay on a Variscan basement exposed in the Argen-
tera Massif (Bigot-Cormier et al., 2006), and are in turn
overlain by the very-low-grade Embrunais-Ubaye
nappes, consisting of Late Cretaceous – Paleocene Pied-
mont-Ligurian Flysch and Helmintoid Flysch of the Par-
paillon Nappe (Kerchove, 1969; Michard et al., 2004).

East of the Frontal Briançonnais Fault, blueschist-to-
greenschist facies units are exposed inside the so-called
Briançonnais fan. The western part of the Briançonnais
fan consists of Briançonnais cover sequences of Carbon-
iferous-to-Eocene age and, in places, Subbriançonnais se-
quences stacked along the Frontal Briançonnais Fault
(Fabre, 1961; Gidon 1962; Michard 1967; Barfety et al.,
1996). Peak pressure in these units never exceeds 2 GPa
(Agard et al. 2002; Malusà et al. 2002; Ganne et al.
2006). The eastern part of the Briançonnais fan consists
of Briançonnais basement units (Desmons, 1992; Malusà
et al. 2002, Ganne et al. 2006), continental margin cover
rocks, calcschists and ophiolites (Caron 1977; Agard et
al. 2002; Schwartz et al. 2007). In the Queyras “Schistes
Lustres”, kilometer-scale metaophiolites slivers embed-
ded within Mesozoic metasedimentary rocks (Lemoine
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and Tricart, 1986; Lagabrielle et al.), show increasing PT
conditions ranging from LT-blueschist facies condition to
the west, to transitional blueschist-eclogite facies to the
east, just west of the Viso unit. These ophiolitic nappes
are topped by the non-metamorphic Chenaillet ophiolites
(Lemoine et al. 2001; Scharwz et al. 2007).

Higher-pressure units crop out in an innermost posi-
tion in front of the Western Po Plain. The Dora-Maira
unit, i.e. the southernmost Internal Crystalline Massif of
the French literature, chiefly consists of metasedimentary
and metagranitoid rocks (Vialon, 1966), and is classically
referred to the distal European margin (Lemoine 1986,
2000) or to the northern tip of the Briançonnais-Iberia
terrane (Stampfli et al.1998). The Dora-Maira unit dis-
plays an eclogite facies metamorphic overprint of Alpine
age, locally reaching ultra-high pressure conditions as in-
ferred in the Brossasco-Isasca slice (ca. 3 GPa at 35 Ma)
(Chopin et al.1991; Compagnoni, 2003; Rubatto and
Hermann 2001). The Dora-Maira unit is overlain by eclo-
gite-facies ophiolites, like those exposed in the Viso unit.
The Viso ophiolites reached a peak pressure >2 GPa at ca
45-40 Ma, and were exhumed (see below) at shallow
crustal level at ca 20 Ma (Cliff et al. 1998; Messiga et al.,
1999; Schwartz et al. 2000, 2007; Rubatto and Hermann
2001).

The Ligurian Alps (LA)
The Cottian Maritime Alps pass southeastward to the

Ligurian Alps LA through a composite fault zone boun-
dary described below. The Ligurian Alps represent a pe-
culiar sector of the belt where different tectonic units
were distinguished (more than 20 units according to Seno
et al. 2005a). According to paleogeographical reconstruc-
tions (e.g. Vanossi 1980; Lemoine et al. 1986; Stampfli
1993; Dal Piaz 1999), it may be assumed that the differ-
ent tectonic units originally belonged to the continental
European/Briançonnais margin(s), including part of its
more distal margin (Prepiedmont of the authors), and to
the Piemonte-Ligurian oceanic domain.

In the external zone of the belt (Fig.8 and see below)
the units of the Dauphinois-Provençal domain of the Nice
arc are directly overthrusted (in the western Ligurian
Alps) by the Paleocene-Upper Cretaceous Flysch nappes
subdivided from southwest to northeast into three major
units: S.Remo, Moglio Testico and Alassio-Borghetto
(Helminthoid Flysch nappes of Western Liguria; Vanossi
et al., 1984; Seno et al. 2005). The Helminthoid Flysches

represent the top of the LA nappe stack and overthrust at
their north/north-east termination (Eastern Ligurian Alps)
the Prepiedmont and Briançonnais units.

The Briançonnais units are divided in External units
and Internal units, composed of a Pre-Namurian base-
ment (exposed only in the Internal units; Seno et al.,
2005), volcanic and continental clastic deposits (Permian
to early Triassic in age; Cortesogno et al., 1993; Seno et
al., 2005) with a detached Meso-cenozoic cover se-
quence. The external units display a very low to low-
grade Alpine metamorphic overprint (anchizone up to
greenschist facies; Seno et al. 2005) whereas the Internal
Briançonnais units reach peak conditions up to P ≈ 1.3
GPa and T > 400°C (Cabella et al., 1994).

The Prepiedmont units show a stratigraphic succes-
sion and basement features different from those of the
Briançonnais thoroughly described by Dal Piaz (this vol-
ume), while the basement units are overprinted by Alpine
metamorphism estimated at P = 1.5 GPa and T= 550 ± 30
C° (Cortesogno et al., 2002).

Starting since Late Eocene up to Early Oligocene, the
Prepiedmont and Briançonnais units underwent a SSW-
ward directed stacking (and see below), followed by an
almost co-axial backfolding event, whose intensity de-
creases towards the outer SW sectors. A later phase (Late
Oligocene-Early Miocene ?) of thrusting and associated
development of large scale open folds, verging SSW, fi-
nally occurred resulting in a complex transpressional set-
ting, with juxtaposed folded and sheared domains occur-
ring at several scales (Gosso et al., 1983; Seno et al.,
2005; Piana et al., 2009).

The innermost units of the LA are represented by the
HP-LT units of the Voltri Massif (or Voltri Group, Chie-
sa et al. 1975) and by three tectonometamorphic units
(Cravasco-Voltaggio-Montenotte-CNMU, Gazzo-Iso-
verde-GIU, Figogna unit-FU) historically referred to as
the Sestri–Voltaggio Zone (Cortesogno and Haccard
1984).

The Voltri Massif consists of two main tectonometa-
morphic units (Voltri Unit and Palmaro-Caffarella Unit,
Capponi and Crispini, 2009) composed by high pressure
metamorphic ophiolites. The ophiolites consist of serpen-
tinites with metagabbros and metabasites, metasediments
and mantle peridotites, with peak eclogite (450–500 °C
and 1.3–2.0 GPa for the Voltri Unit; Messiga and Scam-
belluri, 1991, Liou et al. 1998, Federico et al., 2005) or
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blueschist (c.a. 350-400 °C and 1.2 GPa for the Palmaro-
Caffarella Unit; Desmons et al. 1999) syntectonic alpine
metamorphism, strongly overprinted by greenschist fa-
cies fabrics (Capponi and Crispini 2002). These units
show superposed deformation structures, formed at dif-
ferent crustal conditions. Subduction related structures
are represented by eclogite facies foliation and rootless
hinges of isoclinal folds, occuring all over the massif as
early relic structures. Deformations linked to the exhu-
mation and nappe stacking are represented by Na-am-
phibole greenschist to greenschist facies s.s. folds and
schistosities. These are the most evident structures in the
field and control the contacts between different litholo-
gies (Capponi and Crispini 2002, Federico et al. 2009
and bibliography therein).

The last stages of the tectonic evolution in the Voltri
Massif are characterized by superposed brittle-ductile
and brittle structures linked to transpressional tectonics
(described in Spagnolo et al. 2007; Crispini et al. 2009).

The GIU and the CVMU units are separated from the
Voltri Massif by the Sestri-Voltaggio Line (Cortesogno
and Haccard 1984) that at present is a steeply dipping N-
S oriented km-scale fault. Most deformation predated the
Oligocene, since the main structures are sealed by the
Oligocene-Miocene formations of the Tertiary Piemon-
tese Basin, even if later reactivations can be locally ob-
served (see below). To the east the units of the Sestri-
Voltaggio zone are in contact with very low-grade flysch
units (Ronco, Mignanego and Montanesi Units Capponi
and Crispini, 2008) and the unmetamorphosed Antola
flysch unit (correlated with the External Ligurian units;
Abbate and Sagri 1984 and references; Ellero, 2000; Cer-
rina et al. 2002; Levi et al. 2006).

The CVMU and the FU are metaophiolitic units and
are re-equilibrated respectively in low-T blueschist facies
(T= 300-350° C and Pmin= 0.8-1.0 GPa for the CVMU;
Cabella et al., 1994, Desmons et al. 1999) and pumpelly-
ite–actinolite facies conditions (T= 300-350° C and P=
0.7, Desmons et al. 1999). The GIU comprises carbonate
rocks and shales of Triassic to early Jurassic age, which
attained the same blueschist facies metamorphic condi-
tions of CMVU. The FU shows a polyphase structural
evolution but developed at lower metamorphic condi-
tions.

The timing of the high pressure metamorphic events
in the internal units of the Ligurian Alps are constrained
between ca. 50 Ma (eclogite facies) and 40 Ma

(blueschist facies) in metaophiolitic rocks (Federico et al.
2005). Greenschist-facies retrogression during exhuma-
tion is locally dated at ca. 33 Ma (Federico et al. 2005).
In the continental units of the Internal Briançonnais Early
(Middle?) Eocene metasediments record blueschist facies
overprint (e.g. Seno et al., 2005).

The Northern Apennine (NA)
The uppermost units of the Northern Apennine nappe

stack are represented by the Ligurian units. These units
can be subdivided on the basis of stratigraphic and struc-
tural features into two main groups (Elter 1975) well de-
fined in the Ligurian–Emilian Apennine (Fig.2): the In-
ternal Ligurian Units and the external Ligurian units. The
former are characterized by the presence of ophiolites
and an Upper Jurassic to Lower Cretaceous sedimentary
cover (cherts, Calpionella limestone and Palombini
shales) associated with Upper Cretaceous–Paleocene tur-
biditic sequences (Molli, 2008 and ref.). The Internal
Ligurian units are considered as remnants of the Liguro-
Piemontese ocean or Ligurian Tethys. The External Lig-
urian Units are, on the other hand, distinguishable for the
presence of the typical Cretaceous–Paleocene calcareous
dominant sequences (the Helminthoid Flysch) associated
with complexes or pre-flysch formations called ‘basal
complexes’. According to their stratigraphic differences,
two main subgroups of units can be recognized (Molli,
1996; Marroni et al. 1998 and references): those associ-
ated with ophiolites and with ophiolite derived debris,
and others without ophiolites and associated with frag-
ments of Mesozoic sedimentary sequences and conglom-
erates with Adria affinity (Sturani 1973; Zanzucchi 1988;
Molli, 1996). Because of their age (Elter et al. 1966;
Wildi 1985; Zanzucchi 1988; Gasinski et al. 1997; Dan-
iele and Plesi 2000) and composition, these coarse-
grained conglomerates (Salti del Diavolo Conglomerates)
have been compared since the early 1970s with those of
Pre-alpes Romandes (Mocausa conglomerates of the
Simme Flysch) implying a common palaeotectonic set-
ting on the distal side of the Adria continental margin
(e.g. Elter 1997; Stampfli et al. 1998; Lemoine et al.
2001 and references). As a whole, the External Ligurian
units can be regarded as relicts of the former ocean–con-
tinent transition area and of the distal Adria continental
margin in the Apenninic transect (Molli 1996; Marroni et
al. 1998 and references therein). The Internal Ligurian
units suffered polyphase deformation and metamorphism
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in sub-greenschist facies conditions (prehnite–pumpelly-
ite in metabasic rocks), whereas the External Ligurian
units were deformed at shallow structural levels (diagen-
esis–anchizone transition in pelites).

Among the Ligurian units, the Antola Nappe deserves
a special mention. From the lithostratigraphic point of
view, this unit can be correlated with the External Liguri-
an units (Abbate and Sagri 1984 and references; Cerrina
et al. 2002; Levi et al. 2006), even though it occupies a
structural position at the top of the Internal Ligurian
units, in contrast to the other External Ligurian units
which are structurally below the Internal Ligurian units.
Moreover, it is classically correlated with the Helmin-
thoid Flysch of the Ligurian and Maritime Alps and
therefore played a special role during the pre-Oligocene
evolution of the Alps/Apennine orogenic system (Elter
and Pertusati 1973; Elter 1997; Corsi et al. 2001) as we
will see hereafter.

The sub-Ligurian units crop out geometrically below
the composite Ligurian system and are characterized by a
strong thickness variability at the regional scale. The sub-
Ligurian units are represented (Plesi 1975; Cerrina Feroni
et al. 2002 and references therein) by Cretaceous–Eocene
sequences mainly formed by sandstones and shaly-calca-
reous deposits (Ostia–Scabiazze and Canetolo fms) fol-
lowed by Oligocene–lower Miocene (Aquitanian) silici-
clastic and marly deposits (Aveto–Petrignacola and Coli
units). Within the Cretaceous–Paleogene sequence, un-
conformities and depositional hiatuses (Vescovi 1993,
1998) of Early, Middle and Late Eocene age are docu-
mented, whereas volcanoclastic deposits with calc-alka-
line affinities (the Aveto–Petrignacola fm.) are dated to
the lower Oligocene. For its age and composition, the
Aveto–Petrignacola fm., has been associated with calc-
alkaline volcanic centres located on the inner (Adria) side
of the Alpine belt (Boccaletti et al. 1971; Ruffini et al.
1995; Cibin et al. 1998).

The original substratum of the sub-Ligurian units is
unknown, although it can be considered transitional be-
tween the oceanic Ligurian and continental Tuscan do-
mains and probably characterized by a thinned continen-
tal crust like part of the External Ligurian domain (Ghi-
selli et al. 1991; Cerrina Feroni et al. 2002). The lower
Oligocene–Aquitanian part of the sequence can be con-
nected with the early accretional and thrust top basins of

the Apennine wedge and bears similarities with siliciclas-
tic turbidites at the top of the Tuscan units. The sub-
Ligurian units were deformed at shallow structural levels
(anchimetamorphic conditions in pelites, Cerrina et al.
1985) starting from Rupelian (c. 30 Ma) (Cerrina et al.
2002, 2004 and references). Below the sub-Ligurian units
lie the so called Tuscan units which are representative of
the former proximal side of the Adria continental margin
(i.e. the Tuscan Domain). These units are formed by con-
tinental successions subdivided into different thrust
sheets, some of which were deformed at shallow structur-
al levels (e.g. the Tuscan nappe), whereas others were
more deeply involved in the collisional stack and meta-
morphosed during Late Oligocene-early Miocene (Klig-
field et al., 1986; Monie et al., 2000) in high- and medi-
um-pressure greenschist facies conditions (up to 0,6-0,8
GPa and 450 °C in the Alpi Apuane and 1 GPa and 350
°C further south in the Montagnola Senese-Argentario
Theye et al., 1997; Giorgetti et al., 1998; Molli et al.,
2000; Liotta, 2002), forming the so-called Tuscan meta-
morphic units. These units crop out (Fig. 5) in tectonic
windows forming an arcuate belt from P. Bianca in the
north through the Alpi Apuane, M. Pisani, Montagnola
Senese and M Romani in the south, along the so-called
Mid-Tuscan metamorphic ridge. The stratigraphic evolu-
tion of the Tuscan sequences testifies the sedimentation
on a passive continental margin during Mesozoic rifting
and post-rifting stages related with the Ligurian ocean
opening (Bernoulli et al., 1979; Bernoulli, 2001; Ciarapi-
ca and Passeri, 2002). Sedimentary response to regional-
scale contraction and tectonic inversion is recorded dur-
ing the Cretaceous and Eocene within the Scaglia fm.
where conglomerates and unconformities can be ob-
served (Fazzuoli et al., 1994). The sedimentary history in
the Tuscan domain ends during the Oligocene and Early
Miocene with siliciclastic turbidites (Pseudomacigno and
Macigno) interpreted as clastic wedges of Apennine fore-
deep and wedge top basins. Umbria-Romagna-Marche
units are well exposed in the southernmost outer North-
ern Apennine where they are characterized by Jurassic to
Palaeogene carbonates and Mio-Plio-Pleistocene marine
clastic sediments deposited in a foredeep and/or in wedge
top basins which evolved during thrusting. These units
are mainly represented in outcrop exposure by a turbidit-
ic clastic wedge (Marnosa–Arenacea fm. and Laga fm.)
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deformed as a classical foreland fold and thrust belt (Ca-
lamita et al., 1994; Tavarnelli, 1997; Coward et al., 1999;
Barchi et al., 2001).

Figure 5. Wheeler diagram showing the stratigraphic framework of Tertiary Piedmont Basin.

From Rossi et al., 2009: principal and minor sequence boundaries, major syndepositional tectonic elements, lithostrati-
graphic units and gross facies distribution are shown. Unconformities (from bottom to top): B-PR, base Priabonian; I-PR,

intra-Priabonian; L-PR, Late Priabonian; B-RU, base Rupelian; I-RU, intra-Rupelian; L-RU, Late Rupelian; B-CH, base
Chattian; L-CH, latest Chattian; I-BU, intra-Burdigalian; L-BU, Late Burdigalian; B-LA, base Langhian; B-SE, Base Serra-
vallian; L-SE, Late Serravallian; L-TO, Late Tortonian; I-ME, intra-Messinian; L-ME, Late Messinian. See Rossi et al., 2009

for a detailed description of unconformity-bounded units.
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Late- to post-orogenic sediments (Late Eocene to
Pliocene in age) of continental to shallow marine origin
can be locally observed lying unconformably on the Hel-
minthoid Flysch units in the northern part of the belt
where they form the so called Epiligurian units (Elter
1975) as illustrated below. Further south, other Late- to
post-orogenic sediments (Oligocene to Pliocene in age)
form basins within the Northern Tyrrhenian realm and
Southern Tuscany (Cornamusini et al., 2002; Brogi and
Liotta, 2008.

The north-eastern domain

The north-eastern domain includes the Po Plain and
the marine realm of the Adriatic sea further south-east
(Figs. 1,2). The Po Plain identifies a c. 500 Km long east-
west trending Neogene basin, bordered to the north by
the south-vergent fold and thrust belt of the southern
Alps, and to the south by the north/north-east vergent
structures of the Apennines (Roure et al., 1990; Mosca et
al., 2009).

The western termination of the Po Plain in spite of its
name shows a very changing geomorphology. From the
geomorphological point of view it can be subdivided into
a few main provinces (Fig.1): the hilly systems of the
Torino Hill-Monferrato to the north and of the Langhe to
the south, where Upper Eocene-Oligocene to Miocene
rocks are exposed, together with their interposed Savi-
gliano and Alessandria plains, in turn separated by the
Asti hills (Fig. 1,2,5).

The Upper Eocene-Oligocene to Miocene successions
outcropping in the present map view (Fig.5) record parti-
ally different tectono-depositional histories, but they be-
longed to a single Cenozoic depositional realm, which in
this paper will be referred to as Tertiary Piedmont Basin
(TPB). The northern outcrops (Monferrato and Torino
Hill areas of the literature) are described below as the
northern Tertiary Piedmont Basin to distinguish them
from the southern ones (Monregalese, Langhe, Alto
Monferrato and Borbera-Curone areas of the literature) of
the southern Tertiary Piedmont Basin. The primary later-
al continuity of the northern and southern TPB succes-
sions as well as their relationships are masked by Plio-
cene to Holocene successions, that fill the Savigliano and
Alessandria depocenters (Mosca, 2006).

As identifiable in Fig.5 and 6, the south TPB sedi-
ments unconformably rest on nappe-stack of the LA and
non-to-low metamorphic Ligurian units. They are

characterized by siliciclastic deposits (reaching thickness
on the order of 4000 m in its central-western part), and
form at the regional scale a gentle north-westward dip-
ping monocline showing great facies variability. Upper
Eocene deposits are preserved only locally to the east
(Borbera-Gruea area) and consist of mudstones (Monte
Piano Marls) upward followed by quartz-rich turbidites
(Pizzo d’Oca) and shelf to marginal-marine facies (Rio
Trebbio unit) (Cavanna et al., 1989; Di Giulio, 1989;
Mutti et al., 1995; Di Giulio and Galbiati 1995).

In the southern TPB, continental to transitional facies
are characteristic of Upper Eocene-Lower Oligocene suc-
cessions (Lorenz 1969; Cavanna et al., 1989, Ghibaudo
et al. 1985; Gelati et al. 1993; Mutti et al. 2002; Rossi et
al., 2009); shelf to slope marly successions with turbi-
dites were deposited during Late Oligocene and Early
Miocene times (Cavanna et al., 1989, Ghibaudo et al.
1985; Gelati et al. 1993; Mutti et al. 2002; Rossi et al,
2009) followed by development of shelfal environments
in the Early Burdigalian (Alto Monferrato area: d’Atri,
1990; Piana et al., 1997).

By contrast, the northern TPB shows more condensed
successions on locally outcropping Ligurian Helminthoid
Flysch units (Elter et al., 1966; Sturani, 1973a). These
Helminthoid Flysch units show the same general charac-
ters of the External Ligurian units originally deposited
from the distal stretched side of the Adria continental
margin. In general, lowermost portions of these outcrops
consist of basinal mudstones (Monte Piano Marls), fol-
lowed in the Oligocene-Miocene by shallow water clastic
and carbonate facies (e.g. Clari et al. 1995; Dela Pierre et
al. 2002a); relative coarse-grained facies significantly
characterize the western outcrops (Torino Hill area e.g.
Bonsignore at al. 1969; Sturani 1973), resting on a buried
south-verging South-Alpine belt (Mosca 2006; Mosca et
al. 2009).

The uppermost portions of the outcropping TPB strata
are represented by widespread homogenous marly sedi-
ments of Tortonian age, and by discontinuous evaporites
and lagoon clays recording the Messinian salinity crisis,
often in form of chaotic and/or resedimented assemblages
(Irace et al., 2005; Dela Pierre et al., 2002b).

In present outcrop exposures, lowermost Pliocene de-
posits are typically represented by marine clays followed
upward by Pliocene sand-rich marginal marine and Pleis-
tocene to Holocene continental successions (Boni, 1984;
Carraro, 1996 and references therein).
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So, the present configuration of the WPP implies that
the 3D tectono-depositional evolution of this area must
be necessarily reconstructed considering features of
present-day outcrops as well as their buried prosecutions,
namely integrating field and subsurface data as will be
seen later on.

Western Alps/Northern Apennine junction
area: structures.

Relevant shallow and deep structures across the West-
ern Alps/Northern Apennine junction area are illustrated
through geological cross-sections of Figs. 6 and 9.

Cross-section 6.1 is representative of the Cottian Mar-
itime Alps the southernmost segment of the Western
Alps, and to the north/northeast includes the present day
Po Plain domain and its subsurface features. The cross-
section is mainly based on Ford et al. (2006) and Mosca
et al. (2009) and includes some geological data derived
from the “Geo-France 3-D”in Lardeaux et al. (2006),
Bigot Cormier et al. (2006), Larroque et al. (2009).

Figure 6. Regional cross-sections across the Western Alps and Northern Apennine junction area.

Traces of the cross-sections in Figure 2. 6.1) from Digne to the Po plain. Mainly based on Ford et al. (2006), Mosca et al.
(2009), Lardeaux et al. (2006), Bigot Cormier et al. (2006), Larroque et al. (2009); 6.2) from the Ligurian Sea to the Western
Po Plain (modified after Mosca 2006). Structural data for the western side mainly came from Bigot Cormier et al., 2002,
2006; Piana et al., 2009, whereas for the N/NE side mainly from Piana et al., 2009; Rossi et al., 2009. Depth of Moho is

from Waldahauser et al., 1998; Cassinis et al., 2002; cross-section across the Bobbio window after Molli (2008) and
based on subsurface data in Biella et al. (1987); Cassinis et al. (1990); Laubscher et al. (1992); Cassano et al., (1986);

Toscani et al. (2006) and geological data contained in Elter et al. (1992); Labaume (1992); Bernini et al. (1997); Cerrina et
al. (2002); Cross-section 6.4 (after Molli, 2008) is traced across the Alpi Apuane window. It includes data of Cassano et

al. (1986); Labaume (1992); Castellarin (1992, 2001) for the external part and surface geology of Carmignani et al. (1978);
Molli et al. (2000, 2002) and Molli and Vaselli (2006). Colors as in Fig.2.

In the SW part of the section below the Argentera
Massif is drawn as a crustal blind thrust (Bigot Cormier

et al., 2006; Larroque et al., 2009 and references) splay-
ing southwest within the decollement level of the Triassic
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evaporites of the Castellane and Nice area. Deep-seated
thrusting below the Argentera has been invoked to ex-
plain the denudation rate since 10 Ma with increase at 3.5
Ma in association with reverse and strike-slip faulting
(see below) along the Argentera-Bersezio and Frama
Morte fault zones Bigot-Cormier et al. 2006; Larrouque
et al., 2009). Deep-seated thrusting of the Ivrea-body is
drawn according to Roure et al., 1990; Ford et al., 2006;
Béthoux et al., 2006; Larroque et al., 2009). In the cross-
section the Ivrea body extends below the Dora Maira
which directly overlays its roof at c. 10 Km of depth. The
Ivrea body played the special role of buttress during early
collision of the European and Adriatic plates and those of
indenter during later evolution (Laubscher, 1988; Roure
et al., 1990; Schmid and Kissling, 2000; Lardeaux et al.,
2006).

In the northeastern part of the section, complex inter-
ference between thrusts with opposite vergence produced
the pop-up structure and the antiformal shape of the Tori-
no Hill where well recognizable south-verging thrusts
acting until Burdigalian time were followed by north-
verging thrusts controlling the present northward transla-
tion of TPB over the Po Plain foredeep. Along the inter-
nal side of the metamorphic Alpine axial sector, the sec-
tion shows the westernmost occurence of the non-meta-
morphic Ligurian units, buried by TPB succession. The
Ligurian units progressively thin out from their eastern
outcrop exposure toward the south between metamorphic
units and the southwestern extension of the Adriatic
units.

Cross-section 6.2 is representative of the “LA/NA”
domain, which is characterized at surface levels by Al-
pine tectonic structures developed above a “Ligurian”
Moho. The cross-section depicts the double-vergent
transpressive system of the Ligurian Alps, that on the
NE-side caused the superposition of slices of the meta-
morphic Alpine belt onto the Adria crust, with involve-
ment of Ligurian non-metamorphic units (Helminthoid
Flysches) and synorogenic Oligocene-Early Miocene ter-
rigenous sediments of the Tertiary Piemonte Basin (see
below), while on the SW side it induced, since Early Oli-
gocene times, the stacking of the Ligurian Brianconnais
thrust sheets, detached above the European-Ligurian
crust, and the SW-vergent thrusting of Ligurian Brian-
connais onto the Dauphinoise domain, with coheval su-
perposition of Helminthoides Flysch at the top of the Lig-
urian Alps stack.

Cross-section 6.3 is traced across the Bobbio window,
one of the most significant structures of the north-west
Apennines. In the Bobbio window the Tuscan foreedeep
deposits of the Bobbio Fm. are exposed below a compo-
site system of Ligurian and subLigurian units. The Bob-
bio Fm. (upper Chattian-Burdigalian; Catanzariti et al.,
2002) can be subdivided into a lower member (Brugnello
Shale) which is made of mudstones with intercalations of
thin-bedded and fine grained sandstones, and an upper
member (San Salvatore Sandstone) consisting of thick al-
ternations of thick-bedded and coarse grained sandstones
and sequences showing lithologies similar to those of the
Brugnello Shale. The pre-foredeep deposits are represen-
ted by the Marsaglia Complex (Labaume, 1992) formed
by debris flow breccias and olistoliths reworking Subli-
gurian wedge-derived elements. The Bobbio Fm., togeth-
er with the underlying Marsaglia Complex, is structured
according to a kilometer scale syn-sedimentary NE-verg-
ing syncline developed at the front of the Early Miocene
submarine thrust front of the Ligurian and SubLigurian
wedge (Labaume, 1992). Stratigraphy, age and structural
features of the Bobbio Formation allowed a direct corre-
lation with the Early Miocene Cervarola foredeep system
of which the sandstones outcropping in the Bobbio win-
dow would represent the northwesternmost outcropping
extension (Reutter and Schluter, 1968; Plesi, 1975; Lab-
aume, 1992). The cross-section is mainly based on avail-
able geological data contained in Elter et al. (1992); Lab-
aume (1992); Bernini et al. (1997); Cerrina et al. (2002)
and references; refraction seismic interpretations of Biel-
la et al. (1987); Cassinis et al. (1990); Laubscher et al.
(1992); and borehole-controlled reflection profiles for the
external area (Cassano et al. 1986; Toscani et al. 2006).
The southwestern part of the section is characterized by
two crustal scale thrusts. The westernmost thrust which
brings a 6-6.1 Km/sec layer to a depth of 5 Km is con-
nected at the surface with the subLigurian overthrust sur-
face (Molli, 2008). The layer, overlain by Ligurian
nappes (Antola, Internal and External Ligurian units) can
be interpreted as related to sub-Ligurian and External
Ligurian basement. The first activation of this thrust
which shows out-of-sequence relationships post-dating
the synsedimentary emplacement of the Sub-Ligurian
unit on top of the Bobbio Fm. can be constrained as post-
Early Burdigalian (Labaume 1992; Elter et al. 1992). The
second thrust displaces the top of Mesozoic Adria carbo-
nates (reflector with velocity of 6 Km/sec) and bounds in
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subsurface the Bobbio composite structure. The develop-
ment of the Bobbio crustal antiform produced the final
emplacement (Tortonian in age) with eastward sliding
away from the crest of the antiform of the Ligurian units
on top of middle Miocene (Serravallian) sandstone
reached in the Ponte dell’Olio deep hole (Elter et al. 1992
and references, Toscani et al. 2006). Along the profile
the Moho gently dips west reaching a depth of c.40 Km
southwest of Bobbio where it rises abruptly to a shallow-
er position in the Ligurian-Tyrrhenian basin (Laubscher
et al. 1992; Castellarin 1992, 2001).

Cross-section 6.4 (modified after Molli, 2008) is
traced across the Alpi Apuane window. It includes data
of Cassano et al. (1986); Labaume (1992); Castellarin
(1992, 2001) for the external part and surface geology of
Carmignani et al. (1978); Molli et al. (2000, 2002) and
Molli and Vaselli (2006). In the cross-section the top of
basement dips eastward from the Alpi Apuane metamor-
phic complex and reaches c.10 Km of depth east of the
Val di Lima fold (Carmignani and Kligfield 1990; Arg-
nani et al. 2003). The basement below is subdivided into
two parts: the upper one is considered part of the Tuscan
metamorphic units exposed in the Alpi Apuane, whereas
the lower is interpreted as an external slice analogue of
the basement reached in an Agip hole (Pontremoli hole)
north of the Alpi Apuane (Anelli et al., 1994; Montanini
and Molli 1999; Molli, 2008). This second basement
slice is floored by a thrust (t2) whose activity could be
Tortonian to Messinian in age and overlies the more ex-
ternal basement and cover thrust sheets. The two internal
crustal thrusts (t1 and t2) which correspond to the
“Apuan Alps” and “Abetone” thrusts of Boccaletti and
Sani (1998) are here considered as having a component
of motions out of section, as structural data in their sur-
face splays seem to indicate (e.g. Plesi et al. 1998; Cerri-
na et al., 2002). Along the profile, the Moho is gently
west dipping reaching a depth of c.50 Km and jumps to a
shallower position in the Tyrrhenian Moho (references in
Pialli et al. 1998; Castellarin 2001; Scafidi et al., 2010).

Boundary Faults

Figure 7 presents the boundary fault zones playing a
major role during the interaction between the evolving
Alps and Apennines orogenic belts. In the scheme are al-
so included some fault zones showing an ongoing seis-
mic activity related with present-day tectonics.

Moving from the south/western to north-north/eastern
zones and from younger to older structures the different
fault systems are indicated with kinematics (where well-
defined) also reported.

South-western Fault Zones: The boundary between
the CMA and LA

Since the early ’70s, many authors invoked a Oligo-
cene-onward, E-W sinistral strike slip fault zone placed
at the southern boundary of the arc of the Western Alps,
in the Maritime Alps (Laubscher, 1971; Guillame, 1980).
Evidences of this major strike slip zone were documented
by Ricou (1981) and Lefebvre (1983) along the so-called
“Couloir de la Stura”, where sinistral strike-slip displace-
ment along a N110 fault zone (Stura Fault, SF and asso-
ciated Preit and Frama Morte lines) affected the Mesozo-
ic-Lower Oligocene succession that rests on the NE
boundary of the Argentera Massif. The successions in-
volved in the km-thick fault zone are steeply dipping and
partially overturned to NE, while the net displacement of
the fault zone, that locally merges with the Penninic
Front, could be of the order of tens kilometers. The role
of the Stura Fault have been underlined later by Ricou
and Siddans (1986), Giglia et al. (1996) and Bigot-Corm-
ier et al. (2006) who strongly remarked the role of strike-
slip tectonics in the formation of the Alpine orogenic
belt. Other evidences of transpressive, NE-vergent defor-
mations along the Stura couloir were reported by Perello
(1997) that documented the local overthrusting of Argen-
tera massif onto the Stura valley Brianconnais succession
and the lower Oligocene Annot sandstones.

More recently, Piana et al. (2009) described another
km-scale, ESE-WNW transpressive fault zone (Limone-
Viozene deformation zone) placed some kilometers to the
south east of the Stura Fault eastern termination, that runs
for many kilometers roughly along the boundary between
the Ligurian Brianconnais and Dauphinois-Provencal do-
mains. This seems to be a major sinistral transpressive
zone active since the first Alpine tectonic stage of the ex-
ternal Ligurian Alps, although important later dextral re-
activations occurred along several individual minor faults
of the zone.

E-W strike-slip faults and shear zones are present
along the boundary between the External and Internal
Brianconnais units (i.e. the Verzera Fault zone, Piana et
al., 2009) and within the Internal Brianconnais, suggest-
ing a possibile prolongation of the fault system in more
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eastern sectors and maybe in the Celle-Sanda fault zone
that marks the boundary between the continental crust
slices of the “Savona Crystalline units and the internal
Ligurian Alps of the Voltri Unit meta-ophiolites (as in-
ferred by Mosca et al., 2009).

In this work, the Oligocene-Neogene kinematic boun-
dary between the Western Alps arc and the Ligurian Alps
is thus individuated in a wide corridor bounded to the
north by the Stura Fault-Penninic Front, and that compre-
hends the E-W strike slip faults of Ligurian Brianconnais,

the Limone-Viozene sinistral transpressive zone, the
boundary faults of the NE side of the Argentera Massif
(Bersezio Fault, Tricart, 2004; Bigot-Cornier et al., 2006,
the Bagni-Vinadio Fault, Perello et al., 2000; Baietto et
al., 2009) and other minor faults such as the Saorge-Tag-
gia fault that allowed since Early Oligocene an indipend-
ent kinematics of Ligurian Alps with respect to the Mari-
time-Cottian Alps, with sinistral regional main transfer in
the Oligocene followed by dextral movements in Late
Miocene-Pliocene up to now.

Figure 7. Boundary faults and subsurface structures across the Western Alps/Northern Apennine junction area.

The figure reports the alpine foreland European-derived units; the inner Alpine nappe stack with metamorphic and unme-
tamorphic upper units (the same colors are used for the Alps s.s. and for their southern prolongation e.g. Ligurian Alps

and Northern Apennine p.p.); Alpine retrowedge and the Apenninic units. All unit-types are reported in outcrop and sub-
surface occurences. Argentera Bersezio Fault System; CS, Celle Sanda; FBF, Frontal Briançonnais Front; LVVFS, Li-

mone, Verzera, Viozene Fault System; OL, Ottone Levanto Line; PTF, Padane Frontal Thrust; RFDZ, Rio Freddo Deforma-
tion zone; SF, Stura Fault; STF; Saorge Taggia Fault; VVL Villalvernia Varzi L; Trace of fault zones, thrust and oblique

thrust are also reported altogether with the stretching lineations on then main exhumation related foliation (Mid Eocene-
early Oligocene in age) (after Menardi Noguera, 1988; Crispini and Capponi, 2001; Carminati, 2004; Seno et al., 2006).
Rotation value (after Collombet et al., 2002; Maffione et al., 2008 and references) are reported with the poles of rotation

for Corsica-Sardinia and BTP basin according to different authors: 1) Elter and Pertusati, 1973; 2) Vanossi et al., 1994; 3)
Laubscher, 1988, 1991; 4) Rehault et al., 1984; 5) Hogerdujin Strating et al., 1994.

North-eastern Fault Zones: the boundary between
the LA and NA

The AX fault (AXF)
A first order unexposed fault zone has been recently

illustrated in subsurface below the Western Po Plain by
Mosca et al., 2009; Rossi et al. 2009. These authors in-
dentified this boundary as the front of the Alpine axial
sector (AXF). In this paper this medium to low angle

fault zone marks the type of the present substratum of the
Alps-Apennine junction (Figs. 6,7). It separates buried
elements of the axial Alpine belt, here representing the
northward prolongation of LA, made up of HP/LT meta-
morphic rocks and low grade to unmetamorphic units,
(both parts of the same pre-Late–Eocene Alpine-orogenic
wedge) by the Helminthoid Flysch units that constitute
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the bedrock of the Torino and Monferrato Late Eocene-
Miocene sedimentary successions. These Helminthoid

Flysch units are in physical continuity with External Lig-
urian units of the NA, which also overlie Adria-derived
continental units.

Figure 8. Main tectono-metamorphic units.

a) Sketch showing the main tectono-metamorphic units in the area encompassing the Voltri Massif, the Sestri-Voltaggio
Fault Zone and the Flysch Units of central Liguria (Ligurian Alps, see text for details). Trace of cross-section in Fig. 8d is
shown; in red the main faults; b) General crustal scale cross section through SVZ and the sourronding domains redrawn

and modified after Biella et al., 1988; c) Symplified cross-section of the area close to the Sestri-Voltaggio Fault Zone.
This can be considered as a high strain zone (Crispini et al., 2009) characterized by intense shearing and fracturing. The
"old Sestri-Voltaggio Line" is interpreted as an early nappe contact, later reworked at shallow crustal levels. A regional

backthrusting (top to E-NE) phase involves both Oligocene TPB successions and the metamorphic basement; 8d) WNW
to ESE cross-section (modified from Capponi and Crispini, 2008 - Foglio GENOVA 1:50.000) showing the simplified

structural architecture at very shallow level of the area across the innermost units of the Ligurian Alps (Voltri Massif, Ses-
tri-Voltaggio Zone and Flysch units).

The Padane Thrust Front (PTF)
The PTF is a South-dipping reflector sealed by Pleis-

tocene sediments that marks the northern boundary of the
Helminthoid Flysch units and their overlying Torino Hill
and Monferrato successions, and separates them from the
Tertiary and Mesozoic sediments resting on the subsur-
face Adria basement. The PTF is mostly a blind thrust
whose vertical projection at surface roughly corresponds
to the geomophologic southern boundary of the Po plain.

Between the AXF and PTF, several transpressive km-
scale fault zones developed during Oligocene and Mio-
cene times, controlling the physiographic features of the
evolving sedimentary basins, as well as sedimentation
rates and provenance and deposenter migration; among
these structures, at least two (the Rio Freddo Deforma-
tion Zone and the Villalvernia-Varzi Line) are to be de-
scribed hereafter in some detail.

The Rio Freddo Deformation Zone (RFDZ)
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The RFDZ (Piana and Polino, 1994; 1995; Piana,
2000) marks the boundary between Torino Hill and Mon-
ferrato areas. The RFDZ and its minor associated struc-
tures strongly controlled the sedimentary evolution of the
Oligocene syn-orogenic basins of the north-TPB at least
until the Early Burdigalian, in a prevalent strike slip tec-
tonic regime, transtensional during the Early Oligocene
and transpressive in late Oligocene-Early Miocene (Dela
Pierre et al., 2003; Festa et al., 2005).

The Villalvernia-Varzi Line (VVL)
The VVL line is a E-W trending high angle fault zone

which, along the Staffora Valley (Oltrepò Pavese area),
separates the clastic successions of the eastern TPB un-
conformably overlying the Antola Unit, to the south,
from the Epiligurian Succession and the underlying Lig-
urian stacks at the top of Tuscan tectonic units of the
Bobbio window, to the north (Figs.6,7). It is considered a
fault with main sinistral strike slip movement developed
during a synsedimentary activity recorded in the TPB and
Epiligurian basins. Biella et al. (1988) recognized its sub-
surface features characterized by a steep attitude bound-
ing at southwest the Tuscan foredeep units of the Bobbio
tectonic window. Mosca et al. (2009) and Rossi et al.
(2009) describe the VVL as a high-angle fault system
characterized by an original extensional behavior accom-
modating the flexural tilting close to the southern edge of
Adria, and since the Oligocene reactivated as contractio-
nal fault during the N-NE verging thrusting of Apenninic
Ligurian units

The main activity of the VVL is considered to be Late
Oligocene-Early Miocene in age by Laubscher et al.
(1992) (see also Schumacher and Laubscher, 1996) who
interpreted it as an outstanding sinistral transfer fault
zone at the southern margin of the Adriatic indenter
(Laubscher, 1988; Laubscher, 1991), parallel to the In-
subric Line and with an opposite kinematics. In this
framework the VVL was dissected by the post-Messinian
thrusting, as the Adriatic indenter appears to have been
inactivated in post-Miocene times (Schumacher and
Laubscher, 1996).

According to Di Giulio and Galbiati (1995) the trans-
pressive left-lateral activity of the VVL can be constrain-
ed using the sedimentary records since the middle-late
Rupelian with two main stages of activity. The first stage
occured during late Rupelian, whereas the second at
Chattian/Aquitanian boundary. Recent tectonic activity
along the Villalvernia-Varzi Line has been argued as well

as the influence of this structure on the morphology and
fluvial dynamics of the area (Meisina and Piccio, 2003).
The kinematic evolution of the VVL is not yet complete-
ly well defined being missing a systematic structural
study. This explains why the VVL line has been also in-
terpreted as a high angle dextral strike slip fault zone
(Cerrina Feroni et al., 2002).

The Ottone-Levanto Line (OL)
The Ottone-Levanto was originally defined by Elter

and Pertusati (1973) as the southern prolongation of the
VVL. It has been considered as the frontal thrust separat-
ing the pre-Oligocene alpine structural nappe stack of the
LA and TPB by the early Miocene NA (Laubscher,
1988). After the early original proposition no detailed
structural studies have been devoted to the recognition
and analyses of the surface expression of such line that
according to the seismic data in Biella et al. (1988) is
here considered as a post-Aquitanian deformation zone
formed by three major splays rooting in a WNW dipping
thrust (Fig.8b).

The Sestri Voltaggio Zone (SVZ)
The Sestri Voltaggio Zone is a km-wide north-south

oriented structural domain that includes tectono-meta-
morphic units of the Alpine belt and it is limited to the
west by the Sestri-Voltaggio Line and to the east is con-
tact with very low grade and unmetamorphic Ligurian
units (Fig.2,8). Actually the Sestri Voltaggio Zone can be
considered as a high strain zone or fault zone and it can
be better referred to as Sestri-Voltaggio Fault Zone. In
the present-day map view it marks the contact among
units of different paleogeographic derivation and reequi-
librated at different P-T metamorphic conditions (Fig.8).

The WNW to ESE cross-section of Fig.8b,c (modified
from Capponi and Crispini, 2008) shows the simplified
structural architecture at very shallow level of the area
across the innermost units of the Ligurian Alps (Voltri
Massif, Sestri-Voltaggio Zone and Flysch units). The
cross-section is representative of the geometric stacking
of the units, of the relationships among the units and their
internal structural arrangement. The poorly exposed con-
tacts among the tectonic units are generally steeply dip-
ping to the east so that the HP-LT units are the lowermost
units and the very low grade Flysch units the uppermost
units of the tectonic pile; the Antola Unit is in the top
structural position, with a low-dipping tectonic contact.
At the outcrop scale, the boundaries among the metamor-
phic units are folded shear zones commonly reactivated
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by strike-slip faults with the same longitudinal trend.
Moreover the area close to the Sestri-Voltaggio Line
(Fig.8) can be considered as a high strain zone (Crispini
et al., 2009) and is characterized by intense shearing and
fracturing.

Figure 8d shows a schematic insight into the tectonic
features close to the Sestri-Voltaggio Fault Zone. A re-
gional top to E-NE backthrusting phase that involves Oli-
gocene TPB successions and the metamorphic basement
is described in the LA and testifies to a major tectonic ac-
tivity lasting up to the Oligocene (d’Atri et al., 1997;
Capponi et al., 2001; Piana et al., 2006. ; Spagnolo et al.,
2007; Capponi et al., 2009). In the same way the tectonic
activity of the Sestri-Voltaggio Fault Zone possibly las-
ted up to Late Oligocene-early Miocene as the related
subsidiary structures involve the Aquitanian–Burdigalian
TPB deposits (Capponi et al., 2009 and references there-
in). The SVFZ and the backthrusts can be inserted in the
same tectonic framework where SVFZ acted as a dextral
tear fault in the general migration of the LA towards NE-
N.

Western Alps/Northern Apennine junction
area: sedimentation and tectonics within
evolving basins

Hereafter we will illustrate the major constraints on
the tectonic evolution of the South Western Alps/North-
ern Apennine junction area as deriving from stratigraphic
records in the prowedge of the Southern Western Alps
(SW Alpine foreland) and the present day retrowedge
represented by the Po plain hinterland including the for-
mer wedge top TPB. For the Northern Apennines the
evolving wedge system, wedge top basins (Epiligurian)
and foredeep units will be described.

Alpine foreland

The Ligurian Alps show, unconformable on both the
Brianconnais and Dauphinoise Mesozoic successions, a
Mid-Late Eocene succession, known as the “Priabonian
Trilogy” Auct., interpreted as deposited during the early
stages of subsidence of an underfilled Alpine foreland
basin (Sinclair, 1997; Allen et al. 1991; Ford et al. 1999)
and made up of three formations, namely the carbonate-
ramp deposits known as Nummulitic Limestone, the Glo-
bigerina Marls and Ventimiglia Flysch (Lanteaume 1958;
1968; 1990; Campredon, 1977, Varrone, 2004).

This last formation consists of a several hundred-me-
ter thick siliciclastic turbidites, laterally equivalent of the
Annot sandstones, (Stanley 1961) referred to the Priabo-
nian – Lower Oligocene? (Vanossi 1990). A basal uncon-
formity separates the Brianconnais-Dauphinoise Mesozo-
ic sediments (Santonian to Campanian in age) from the
Eocene ones. This discontinuity surface is characterised
by evidences of subaerial exposure and can be related to
a period of significant uplift, emersion and erosion of the
substratum in which some hundreds meters of Upper
Cretaceous strata were removed. In the Dauphinoise do-
main, Lutetian continental deposits of Microcodium For-
mation, (Faure-Muret and Fallot 1954; Bodelle and Cam-
predon 1968, Varrone, 2004) are also present, directly
above the Cretaceous unconformity.

The TPB/WPP basin

During the Late Eocene a marine transgression (“Epi-
mesoAlpine” basin sensu Mutti et al., 1995), developed
soon after the inception of the continental subduction of
the European/Briançonnais margin of the LA, with a
deep basin developed on a substratum consisting of the
former exhumed alpine nappe stack. The sediments of
that basin are presently preserved at the base of the south
TPB succession (i.e. Borbera-Grue area), in Monferrato.
In detail, Late Eocene basinal mudstones and quartz-feld-
spathic arenites were deposited over non-metamorphic
Ligurian substrata (D0 stratigraphic regional discontinui-
ty of Fig. 4), and are unconformably overlain by marginal
marine ophiolitic-rich sandstones (Cavanna et al. 1989;
Di Giulio 1989; Mutti et al. 1995; Dela Pierre et al.,
2003). The present central and southern part of TPB, rest-
ing on metamorphic units, were in a more marginal set-
ting at that time, as recorded by deposition of fluvio-la-
custrine facies overlain by alluvial fan deposits (Rossi et
al., 2009).

During the Oligocene, at a regional scale, sediments
were mainly accommodated in two complex structural
depressions consisting of fault-bounded, partly coalesc-
ing depocentres, resting to the south-west and north-east
respectively of a major structural divide, representing the
Alto Monferrato high.

In the southern areas (i.e. the region extending from
the Alto Monferrato to the Monregalese-Saluzzese), a
number of minor sub-basins developed over the Alpine
axial sector. More to the east a more continuous depres-
sion developed and extends to the north in the subsurface
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towards the Monferrato area (Mosca et al., 2009; Rossi et
al., 2009). The deposition during Early Rupelian was typ-
ically dominated by alluvial fan-to-fan delta conglomer-
ates overlain by a complex alternation of paralic, margin-
al marine and shelfal facies, resting on different types of
rock substrate (D1 regional discontinuity). Since Late
Rupelian, a transgression associated with the occurrence
of drowning-platform unconformities led to a dramatic
marginward shift, toward the south and the west, of the
fluvio-deltaic systems, that were replaced basinward by
shelfal gravity flow-dominated coarse-grained bodies en-
cased in marine mudstones.

Along southern basin margins, the deposition records
a SW-ward diachronism of fluvio-deltaic deposits in rela-
tion to a regional transgression from the NE (Rossi et al.,
2009).

The Chattian-Aquitanian succession was dominated
by turbidite systems which, along the western Alpine
margin (Saluzzese and Monregalese areas; Mosca, 2006,
Rossi et al., 2009) and the adjacent Southalpine thrust-
fold-belt are overlain by a gravel-rich alluvial fan to fan-
delta unit that prograded eastwards and northwards. In
large part of the north TPB and south TPB, progressive
drowning of the platform depositional areas occurred,
and slope marly sediments were widespread. Siliceous
sediments formed in Aquitanian- Early Burdigalian over
large part of the TPB, as recorded in this time span in
several sectors of the Central Mediterranean area.

Successively, in the Early Burdigalian, an important
inversion of the basin occurred, giving origin to chrono-
stratigraphic gaps both in the Alto Monferrato and in the
north TPB sector, where carbonate shelf sediments were
deposited unconformably (D2 regional discontinuity) on
the Late-Oligocene –Aquitanian sediments (d’Atri 1990;
Piana et al. 1997; Dela Pierre et al, 1995).

During the Late Burdigalian - Early Langhian, a ba-
sin-wide turbidite system was deposited, showing lap-out
terminations (D2a discontinuity) and lateral fringing to-
ward structurally-high areas located to the east (Alto
Monferrato area) and to the north (Monferrato area).
Since the deposition of this succession, the TPB is char-
acterized by a more regular physiography, being a larger
and more uniform basin, bounded to the north and to the
south by uplifting areas. In this time, the major depocen-
tre was located in the Langhe area.

Since the Langhian, (D3 discontinuity) major depo-
centers for marine and turbidite systems were

progressively shifted northward below the present Savi-
gliano and Alessandria basins (Falletti et al., 1995; Mos-
ca, 2006; Mosca et al., 2009), due to the combination of
marginal uplift, basinward tilting and outward prograda-
tion.

The ongoing shortening led to the progressive reduc-
tion of the sediment accomodation space until the early
Tortonian (D4 discontinuity), when homogenous marly
sediments were unconformably deposited in most part of
the TPB.

The Messinian Salinity Crisis was superimposed to
this framework and most of the evaporites were wide-
spread resedimented as mass flow deposits (D5 disconti-
nuity) (Dela Pierre et al. 2002a; Irace et al., 2005; Mosca
2006; Mosca et al., 2009; Rossi et al., 2009).

The westerly propagation of the north-vergent struc-
tures involved the north-western TPB since Late Miocene
time. The occurrence in this area of Southalpine crust at
shallow levels could have represented a major obstacle to
the progressive westward propagation of the north-verg-
ing thrust systems. As a consequence, the regional N-S
shortening was accommodated more to the south-west, as
recorded since Late Miocene by pronounced activity of
the fault systems at present buried in the Savigliano basin
area (Mosca et al., 2009)

In this framework the Savigliano and Alessandria de-
pocentres evolved as highly subsiding sub-basins close to
the lateral ramps of the north-verging Torino Hill-Mon-
ferrato tectonic arc.

Pliocene sediments record a re-establishment of nor-
mal-marine conditions after the Messinian Salinity Cri-
sis: clay-rich open marine facies were deposited along
previous basin margins (D6 discontinuity). Sedimenta-
tion continues upward with sand-rich marginal marine
deposits ranging from Early to Middle Pliocene, followed
in the Pleistocene by mainly continental deposits. Plio-
cene and younger deposits exceed 2 km in the Savigliano
and Alessandria Basin depocenters, while they are only a
few hundred meters thick in their interposed Asti region.

The Epiligurian basins

North of the VVL the TPB corresponds to the basin
unconformably formed onto the Ligurian Units of the
Northern Apennine. The sedimentary succession depos-
ited in this basin is known as Epiligurian Succession
(Ricci Lucchi, 1986) and it is now exposed in several
scattered outcrops along the Emilian side of the Northern
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Apennine from the Oltrepò Pavese area to that of Bolo-
gna (Fig.2).

The deposits of the Epiligurian Succession consist
mainly of terrigenous clastics even if they include facies
ranging from pelagic and hemipelagic deposits to silici-
clastic turbidites and to shelf sandstones and calcarenites;
the whole succession shows a maximum thickness of
more than 5000 m. The Epiligurian Succession is charac-
terized by ages ranging from Middle Eocene to Late Mio-
cene-Pliocene and overlies the at least in part already de-
formed Ligurian Units. Starting from the early Oligocene
the evolution of the Epiligurian Succession was related to
the NNE-verging migration of the Apenninic accretion-
ary wedge, which progressively incorporated the fore-
deep units of the Adria continental margin (Fig.4,6).

The Epiligurian Succession was therefore affected by
contractional tectonics (thrusting and folding) as well as
extensional deformation (low angle normal faults) which
can be related with internal dynamics of evolving NA
wedge (Costa and Frati 1997; Botti et al., 2006; Molli et
al., 2000; Di Giulio et al., 2002; Molli, 2005).

From a stratigraphic point of view, the Epiligurian
Succession consists of unconformity-bounded units
whose boundaries (major unconformities) are strongly
controlled by sub-marine tectonics which often generated
slumpings and olistostromes (sedimentary melanges).
Five major unconformities that define the main lithostra-
tigraphic units (Monte Piano, Ranzano; Antognola, Bis-
mantova, Termina, Gessoso-solfifera and Argille Azzurre
formations) occur.

The sedimentation of the Epiligurian Succession be-
gan in the Middle Eocene (Lutetian p.p.-Bartonian) with
marls (Monte Piano Fm) deposited in a deep marine envi-
ronment (Di Giulio et al., 2002), locally preceded by
muddy chaotic deposits and/or sandstone turbidites
(Loiano Sandstone). The overlying basal unconformity of
the Ranzano Fm, which often affects the Ligurian Units,
testifies the vertical movements and submarine erosion of
the Ligurian wedge from the Upper Eocene to the Lower
Oligocene. The Ranzano Fm. is unconformably overlyain
by the Antognola fm. starting from the Rupelian (Lower
Oligocene) a system of siliciclastic turbidites (sandstones
and conglomerates) recording a continuous subsidence of
the Ligurian wedge up to Chattian-early? Aquitanian.

During this time span the NA accretionary wedge en-
larges by frontal accretion at the toe wedge e.g. within
the sub-Ligurian/Canetolo system (Bratica-Salsominore

and Coli-Marra units) and by underplating of the distal
Adria continental margin as recorded by the Tuscan units
stacking.

The unconformity at the base of Contignaco Fm. is
possibly the response of a low-angle normal fault-related
subsidence during early exhumation and sin-contractional
stacking of deepest parts of the wedge e.g. Tuscan units
(Molli et al., 2002; Molli, 2005; Fellin et al., 2007; Mol-
li, 2008).

The following Burdigalian regional major basal un-
conformity of the Bismantova Fm. shelf deposits (upper
Burdigalian-Serravalian), can be connected with a major
step of the migration of the Ligurian Units onto the
Northern Apennine foredeep and in particular that corre-
sponding with the emplacement onto the Cervarola Fm.
of the Bobbio tectonic window (Labaume and Rio,
1994).

The base of the Bismantova Fm. represents also the
beginning of a new Middle-Upper Miocene sedimentary
cycle of the Epiligurian succession; the middle Miocene-
Lower Miocene depositional cycle shows an overall shal-
lowing trend which ends with a silica-rich marly sedi-
mentary horizon (Contignaco Fm.) that records a Medi-
terranean scale biogenic-volcanogenic episode correlat-
ing through all domains of the Northern Apennine
(Amorosi et al., 1995). The regional unconformity below
the Contignaco Fm. does not correspond to the base of
the siliceous zone itself, but rather to the base of wide-
spread resedimented deposits in debris flow or turbidite
facies (Canossa Melange or Anconella Sandstone), mark-
ing an important Aquitanian tectonic event which affec-
ted the Northern Apennines (Ligurian wedge emplace-
ment above the Coli-Marra Subligurian Unit and the Tus-
can Nappe Macigno Fm). The Middle-Upper Miocene
sedimentary cycle of the Epiligurian succession is char-
acterized by a shallow to deep marine cycle evolving
from the Bismantova Fm. to the Termina Fm. which is
characterized by mudstone slope deposits with intercala-
tions of thick bodies of resedimented sandstones and
sedimentary melanges. These features indicate that the
thrust top basins (where the Epiligurian succession were
deposited) felt the effect of the Ligurian wedge evolution
and also the base of the Termina Fm. marks a regional
discontinuity possibly connected with the progressive
thrusting of the underlying foredeep units and with the
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unroofing and exhumation processes the Tuscan meta-
morhic units of the Alpi Apuane region suffered from
Middle Miocene to Middle Pliocene times (Molli, 2008).

The Termina Fm. evolved upward to the Gessoso-sol-
fifera Fm. (Messinian) which is made up of both primary
and clastic, resedimented evaporites with interbedded or-
ganic-rich shales, deposited during the evaporitic and
postevaporitic stages of the Messinian salinity crisis.

The overlying major unconformity in the Epiligurian
succession corresponds to the base of the upper Messini-
an Colombacci Fm. (mainly continental clastic deposits
derived from Apenninic sources with subordinate clays
and marly limestones) which postdates the intra-Messini-
an tectonic event of the Northern Apennine evolution,
correlated with the beginning of the second stage of
Northern Tyrrhenian Basin rifting.

The upper part of the Epiligurian succession, overly-
ing the Colombacci Fm., is represented by a thick (more
than 1500 m) mudstone-dominated succession deposited
in a relatively deep marine environment (Argille Azzurre
Fm.) spanning in age from lower Pliocene to Pleistocene.
The Argille Azzurre Fm presents two regional uncon-
formities: the lower one occurred in the lower Pliocene
(G. puncticulata phase; Cerrina Feroni et al., 2002, 2004;
see also Vai, 1992) and recorded the involvement in the
accretionary wedge of the youngest foredeep deposits
(Marnoso-Arenacea Fm.) and the in-sequence overlying
mainly marly post-foredeep deposits of lower Pliocene
age (e.g. Cella Marl and Riolo Terme Fm.). The base of
the lower Pliocene sedimentary cycle is locally marked
by conglomerate and sandstone bodies (Monterumici
Fm.; Borello Sandstone). The top of the lower Pliocene
cycle is limited by the Middle Pliocene regional uncon-
formity, well marked in the Romagna sector also by shelf
carbonate deposits (Spungone Fm.), which points to the
still active tectonics (thrusting and folding deformation)
of the Northern Apennines during the Middle Pliocene.

The Adriatic foredeep successions

While the alpine wedge (Penninic and Ligurian units)
at the Alps-Apennines junction was buried under deep-
water sediments, a foredeep formed on Adria continental
crust (Menard, 1988; Doglioni, 1993). The Adriatic fore-
deep was initially starved (Gallare-Aveto stage of Gar-
zanti and Malusà, 2008), as attested by the Eocene - low-
er Oligocene Gallare Marl and Chiasso Fm to the north
(Di Giulio et al., 2001), and by the Canetolo Complex

and Aveto Sandstone to the south (Catanzariti et al.,
1996; Elter et al., 1999). Huge detrital supply started
abruptly in late Oligocene times (Rögl et al., 1975; Cata-
nzariti et al., 1996), soon after the climax of Periadriatic
magmatism and the onset of denudation in the central
Alps (Gansser, 1982). The Gonfolite clastics thus accu-
mulated proximally in the Southalpine foredeep (Gelati et
al., 1988), while the Macigno turbidites accumulated dis-
tally in the Apenninic foredeep (Di Giulio, 1999).

The coarse-grained Gonfolite clastic wedge is discon-
tinuously exposed north of Milano, and extends for ca 40
km N-S and ca 200 km E-W in the subsurface of the Po
Plain (Pieri and Groppi, 1981; Di Giulio et al., 2001;
Mosca et al., 2009; Rossi et al., 2009). The basal Como
Conglomerate consists of 2 km-thick conglomerates and
pebbly sandstones of late Chattian - early Burdigalian
age, lying over mid-Oligocene marls. The Como Con-
glomerate is interpreted as a fan delta fed from the north
and passing southward to a deep-sea fan (Gelati et al.,
1988). Provenance from the rapidly exhumed Bregaglia
Pluton and wallrocks has long been documented (Heim,
1919; Wagner et al., 1979; Bernoulli et al., 1993; Malusà
et al. 2010). Gonfolite turbidites accumulated until the
middle Miocene (Sciunnach and Tremolada, 2004) and
were next accreted as S-vergent thrust sheets at the front
of the Southern Alps, and unconformably sealed by Mes-
sinian deposits (Pieri and Groppi, 1981).

The foredeep clastic wedges of the Northern Apen-
nine are thick successions of turbidite sandstones feeding
longitudinal basins ahead the thrust fronts (Ricci Lucchi,
1986) as well as in depozones on top of the wedge itself.
They are classically subdivided into tectonostratigraphic
units arranged as thrust sheets, bound on top by Ligurian
units and detached at different levels in the underlying
stratigraphic sequence. From SW to NE, major units are
the chiefly Chattian-lower Aquitanian Macigno Fm, the
upper Chattian-Aquitanian Modino Fm, the upper Chat-
tian-Burdigalian Cervarola Fm, and the Burdigalian-low-
er Messinian Marnoso-Arenacea Fm (Cerrina Feroni et
al., 2004; Catanzariti et al., 2009).

The Macigno turbidites have a fairly constant thick-
ness (2.5 to 3 km) over most outcrop areas, extending ca
50 km NE-SW and 250-300 km NW-SE. Sedimentation
was contiguous with that of Gonfolite clastics (Lorenz,
1984; Gelati et al., 1988). Detrital modes indicate a
prominent crystalline source, with upward decreasing
subordinate supply from intermediate volcanic rocks, and
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negligible sedimentary detritus (Di Giulio, 1999). Sedi-
mentary detritus becomes more important in the youngest
units (Valloni and Zuffa, 1984). Based on basin-fill pat-
terns, paleocurrents, petrographic signatures, and geo-
chronological data, a generic axially Alpine provenance
has long been inferred (Lorenz, 1984; Valloni and Zuffa,
1984), with the exceptions of the episodic calcareous
megaturbidites fed from the south (Gandolfi et al., 1983;
Talling et al., 2007) and some debated lateral radial sup-
ply for the southern Tuscany Macigno (Cornamusini et
al., 2002; Butler 2009). Nevertheless, identification of
specific sources within the Alps is controversial (see Gar-
zanti and Malusà, 2008). Focused erosion of the Lepon-
tine Dome has been recently recognized as the dominant
source of detritus feeding the Adriatic foredeep, based on
independent lines of evidence including petrographical
and geochronogical signatures of the clastic wedges
(Garzanti and Malusà, 2008). The marked topographic
gradient between the rapidly exhumed Central Alps and
the rapidly subsiding Adriatic foredeep favoured long-
distance sediment transfer, which continued through the
Miocene.

Foredeep sandstones of the Northern Apennine are
topped by slope marlstones and in places by shelf calca-
reous sandstones that document the uplift and deactiva-
tion of the foredeep (closure facies sensu Ricci Lucchi,
1986b). Synsedimentary emplacement of the Ligurian
wedge onto the foredeep succession is attested by large
chaotic beds and olistostromes of wedge Ligurian or Sub-
ligurian affinity (Elter and Trevisan, 1973; Castellarin et
al., 1987; Labaume and Rio, 1994; Argnani and Ricci
Lucchi, 2001; Lucente and Pini, 2003).

Western Alps-Northern Apennine junction
area: the role of the Corsica-Sardinia block
rotation

The major role of the Corsica-Sardinia block-rotation
in shaping the Western Alps-Northern Apennine junction
area and in the fragmentation of the former prolongation
of the Alpine chain in the western Mediterranean has
been suggested for more than 40 years (Boccaletti and
Guazzone, 1971; Debelmas, 1972; Elter and Pertusati,
1973; Alvarez et al., 1974; Vanossi et al., 1980;
Laubscher, 1988; Vanossi et al., 1994). Recently ac-
quired paleomagnetic data (Maffione et al., 2008) com-
pleting those of Bormioli and Lanza, 1995; Muttoni et
al., 1998, 2000; Collombet et al., 2002; Carrapa et al.

2003, help better defining timing and magnitude in rota-
tion between the TPB, the underlying Ligurian Alps and
the Corsica-Sardinia block (Speranza et al., 2002; Gattac-
ceca et al., 2007).

Fig. 7 reports the documented amounts of block rota-
tions and their timing in the different domains and units
(see also Ciffelli and Mattei this volume). Although pale-
omagnetic studies from different working groups and
sites have different reference frame (Africa or Europe),
they can be considered comparable (see Maffione et al.,
2008) thanks to the documented negligible rotation rela-
tive to the geographic north of the two major plates dur-
ing Tertiary times (e.g. Besse and Courillot, 2002; Maf-
fione et al., 2008).

For the Brianconnais units of the LA, rotations (with
respect to stable Europe) along vertical axis between 47°-
117° were dated as post-late Oligocene by Collombet et
al. (2002), although some rock samples refer to highly
strained domains that have suffered important rotational
deformations. For the TPB basin Bormioli and Lanza
(1995), Carrapa et al. (2003) and more recently Maffione
et al. (2008) documented in lower Oligocene-Middle
Miocene sediments, counterclockwise rotation (up to c.
50°) (with respect to Africa) during Aquitanian-Serrava-
lian time. Although a detailed structural and paleomag-
netic integrated study was not performed by Maffione et
al. (2008), the result of their statistic oroclinal tests al-
lowed them to exclude that differential rotations occured
in the different studied sites of TPB, thus supporting the
idea that the basin rotated as a whole. Following these
conclusions (but see below) a major concern is relative to
the pole of rotation of the system which has been located
differently as illustrated in Fig.6 (Debelmas, 1972; Elter
and Pertusati, 1973; Laubscher, 1988; Vanossi et al.,
1994; Hoogerdujin Strating et al. 1994; Ghelardoni,
1994). The AXF basal thrust (Mosca et al., 2009) whose
kinematics possibly changed through time could be indi-
cated as the major structure which accomodated the roto-
translational displacement of the LA sector. The possible
lateral (?) surface splays of the AXF fault can be identi-
fied along a VVL and eastward in the OLL.
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Constraints for tectonic models and some
remarks on recent interpretations

On the basis of the presented data we illustrate here-
after the major constraints that have to be taken into ac-
count for a kinematic modelling of the Western Alps/
Northern Apennine junction area.

Constraints from thermochronology

The region between the southern Western Alps and
the Northern Apennine exhibits a complex pattern of ex-
humation in the uppermost crustal levels, nicely imaged
by fission-track (FT) data on zircon and apatite (Fig. 9).
These geochronological systems constrain burial and ex-
humation of rocks across the 240° and the 120°-60°C iso-
thermal surfaces (Gallagher et al. 1998), corresponding

to ca.7 km and 3-4 km depth for a 30°C/km paleogeo-
thermal gradient (Malusà et al. 2006).

In the Western Alps, FTs on apatite are generally
completely reset during the Alpine orogeny (Fügenschuh
et al. 1999; Malusà et al 2005). A remarkable exception
is represented by the Chenaillet unit, which always resi-
ded at shallow levels in the nappe stack (Carpena and Ca-
by, 1984; Schwartz et al. 2007). In the northwestern
Alps, apatite FT data define a regional pattern with de-
creasing ages moving from the axial sector of the belt to-
wards the European foreland (Malusà et al. 2005).

Figure 9. Bedrock fission-track data on apatite and zircon.

After Carpena and Caby 1984, Abbate et al., 1994 ; Balestrieri et al. 1996, Seward et al. 1999, Fügenschuh et al.
1999, Vance 1999, Ventura and Pini 1999, Bigot-Cormier et al. 2000, Bogdanoff et al. 2000, Sabil and Menard 2000, Tri-
cart et al. 2001, Ventura et al. 2001, Carrapa 2002; Balestrieri et al. 2003; Foeken et al. 2003 ; Fügenschuh and Schmid

2003; Balestrieri et al. 2004, Malusà et al. 2005, Bigot-Cormier et al. 2006, Fellin et al. 2007, Schwartz et al. 2007, Tricart
et al. 2007, Labaume et al. 2008.

To the south, apatite FT ages show an opposite trend and
get younger eastward, at least west of the Dora-Maira
unit (Tricart et al. 2007). Evident breaks across major
faults (e.g. Tricart et al. 2001; Malusà and Vezzoli 2006)
and across lower-order faults (e.g. Bigot-Cormier et al.
2006; Malusà et al. 2006; 2009) testify to active tectonics
during and after exhumation. In general terms, the Exter-
nal Massifs and the westernmost units of the Briançon-
nais fan experienced higher exhumation rates than most
of the axial Western Alps since the Miocene (Malusà et

al. 2005; Vernon et al. 2008). Such a differential exhu-
mation was probably accommodated by reverse motion
along the W-dipping Internal Houiller Fault (Malusà et
al. 2009), by normal reactivation of the E-dipping Brian-
connais Fault and associated Longitudinal Faults (Barfety
and Gidon, 1975; Fabre et al., 1982; Tricart et al.2001),
and by forward propagation of the external thrusts loca-
ted beneath the External Massifs (Gratier et al. 1989).
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In the Western Alps, an along-strike gradient with in-
creasing fission-track ages from north to south is also de-
scribed (Fügenschuh and Schmid, 2003; Malusà et al.,
2005). To the south, in the Maritime Alps, the zircon fis-
sion-track system is sometimes not reset, as observed in
large areas of the External Massifs and in the Helmintoid
Flysch nappes, where burial never exceeded 7 km (Sew-
ard et al. 1999; Vance 1999; Bernet et al. 2001; Foeken
et al. 2003; Bigot-Cormier et al. 2006). Such along-strike
gradient implies higher exhumation rates in the northern
sector of the Western Alps with respect to the southern
sector. This may be due to an increasing importance of
crustal shortening that promoted erosion to the north
(Malusà et al. 2005; Malusà and Vezzoli, 2006), coupled
with a greater influence of Apenninic subsidence to the
south (Doglioni, 1994; Garzanti and Malusà 2008).

In the Ligurian Alps, apatites are generally reset dur-
ing the Alpine orogeny (Carrapa 2002), whereas zircons
locally yield unreset Mesozoic ages (Vance 1999; Bernet
et al. 2001). In these latter areas, burial was thus in the
range of 3-4 km to less than 7 km, like in the Internal and
External Ligurian units of the Northern Apennine where
apatite FT ages are in the range of 20-6 Ma, and zircon
FT ages exceed 150 Ma (Balestrieri et al. 1996). In the
Cervarola, Macigno and Modino sandstone, apatite FT
ages range between 3 and 10 Ma, and the extent of exhu-
mation of the nappe pile ranges between 5 and 7 km
(Ventura et al. 2001). Apatite FT ages from the Marnoso-
arenacea Fm record instead post-depositional burial rang-
ing between 5 km and less than 2.5 km. The missing sec-
tion, eroded in the last 5-4 Ma, would consist of foredeep
successions and overlying Ligurian units (Zattin et al.
2002). In an innermost position, geochronological data
from the Apuane Alps indicate that the Apuane rocks
were structurally buried to 15–30 km at about 20 Ma, to
be exhumed across the 240°C isothermal surface at 10–
13 Ma, and finally reach the 70°C isothermal surface by
5 Ma. The Macigno Fm in the Apuane region reached its
maximum depth of 7 km at 20-15 Ma (Fellin et al. 2007).

Constraints from TPB basin

The characters of the large-scale depositional units,
define a long-term, major transgressive-regressive cycle
from Late Eocene to Miocene (Rossi et al, 2009). The
maximum transgression took place in the Late Burdigali-
an and coincides with the maximum rate of tectonic
space creation. This is recorded by the deposition of a

km-thick basinwide and highly efficient turbidite system.
This system separates the older southwestward coastal
onlap and aggradation from the younger outbuilding rela-
ted to the Middle Miocene uplift recorded along both the
southwestern and southeastern basin margins, sometimes
punctuated by forced regression pulses (Rossi et al.,
2009)

Then, since Middle-Upper Miocene major accumula-
tion and subsiding areas were roughly in the present cen-
tral TPB, i.e. Savigliano and Alessandria basins, bounded
to the north by continuous and progressive uplift of
northern TPB arc (Torino Hill and Monferrato)

The TPB and its underling and adjacent substrata ex-
perienced kilometers-scale vertical movements (subsi-
dence and exhumation) following the Late Eocene-Early
Oligocene stages of major contraction. Upward and
downward movements were active in different places at
the same time and the sites of maximum exhumation and
subsidence migrated through time (Mosca 2006; Mosca
et al, 2005; Bertotti et al., 2006). In detail, the southern
segment of the Alpine metamorphic system were rapidly
exhumed and eroded during (Late Eocene-) Lower Oligo-
cene times; after the Lower Oligocene clastic sedimenta-
tion, the southern Tertiary Piedmont Basin (namely the
southernmost basin domains) experienced major km-
scale subsidence and underwent subsequent exhumation.
By contrast, the internal side of the Western alpine arc
was more stable, recording since the Late Oligocene a
more generalized subsidence. This pattern of vertical
movements for TPB and its substrata, characterized by
variations in magnitude and even sign through time and
space, and its correlation with shift of major TPB depo-
centers have been interpreted as related with crustal fold-
ing (Bertotti e Mosca, 2009). Alternative, they may have
developed, at least in part, during progressive rotation of
the southernmost part of the alpine axial belt (Ligurian
Alps domain) to reach the present position.

Some remarks on recent interpretations

A solution to the relationships between Western Alps/
Northern Apennine junction area has been recently pro-
posed by Vignaroli et al. (2008), Maffione et al. (2008)
and Vignaroli et al. (2009). The model suggests that the
eclogitic-bearing units of the Voltri Massif were ex-
humed in an extensional transfer domain which accomo-
dated an opposite outward migration of the Alpine and
Apennine thrust fronts since about 35/30 Ma. It is mainly
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based on a interpretation of the deep structure derived by
3-D tomography, new paleomagnetic data (Maffione et
al., 2008) and a re-interpretation of surface geology in
Central Liguria in particular around the Voltri Massif.

The extensional domain was controlled by a progres-
sive development of a low-angle detachement fault sys-
tem with a general top-to-west kinematics and progres-
sive steepening of the eastern side of the footwall (east-
ern flank of Voltri Massif) by a rolling-hinge mechanism
to produce the final asymmetric doming of the eclogitic
units. A comment with detailed compared overall archi-
tecture and tectono-metamorphic history of the area has
been provided by Capponi et al., (2009) with reply of Vi-
gnaroli et al., (2009).

On the basis of the geological data presented in this
paper we discuss some points of the broad regional tec-
tonic aspects of this model (included also in Maffione et
al. 2008 and Vignaroli et al., 2009) inviting the reader to
refer also to the comment by Capponi et al., (2009) with
reply of Vignaroli et al., (2009) for a more local regional
discussion.

A first point concerns the large scale tectonic frame of
the supposed 35/30 Ma onward opposite retreating sub-
ductions. This setting, fitting part of the geological histo-
ry (up to Pliocene) of the Apennines, is not supported by
the data of the southwestward Alpine foreland which do
not record any lithospheric flexure and related space re-
gional accomodation postdating-34 Ma as the absence of
significant foreland propagation testifies (Ford et al.,
2006; see above).

Moreover, the model does not really solve the prob-
lem of the exhumation of the deep seated metamorphic
rocks of the Voltri Massif which reached the surface in
the Late Eocene-early Oligocene as testified by sedimen-
tary record of TPB basin and its unconformably overlap-
ping. Exhumation was therefore basically achieved be-
fore the time of the supposed opposite retreating (as
claimed in Vignaroli et al., 2008).

Finally, all the pre-early Oligocene structures of the
Ligurian Alps including the Voltri Massif and the Liguri-
an units on top of it cannot be considered related with the
Apenninic subduction system (as claimed in Vignaroli et
al., 2009) but instead formed as all authors recognized
(see references in the paper) within an alpine east-south-
eastward dipping subduction. This is well testified by the
overall architecture of the belt, the superficial continuites
of the alpine nappe stack from Cottian-Maritime to

Ligurian Alps, the tectono-metamorphic history and kine-
matics data available.

Conclusion and open problems
The present-day morphostructural domains of the

Western Alps/Northern Apennine junction area result
from a kinematically complex interaction between inter-
fering orogenic systems active since the Oligocene and
related to the opposite-dipping east-southeast “alpine”
and west-northwest “apenninic” subductions.

Within parts of the present morphostructural domains,
however, reworked and reactivated structures of a for-
merly continuous Late Cretaceous/mid-Eocene intrao-
ceanic and continental subduction-related “alpine” wedge
are preserved and incorporated within the younger “apen-
ninic” system.

From north to south in the junction area between
Western Alps and Northern Apennine the following do-
main can be recognized:

- Domain of Cottian-Maritime Alps represents the
southwesternmost segment of the Western Alps it man-
tains the complete alpine signature from surface to deep
crustal levels. Although the deep structure of the south-
ernmost part of this domain is still uncompletely known
due to the lack of seismic data of other alpine segments
(ECORS CROP and NFP-20 in particular Roure et al.,
1990; Schmid and Kissling, 2000; Lardeaux et al., 2006)
major differences in the overall architecture can be ob-
served if compared with other western Alps transects
(e.g. Schmid et al., 2004). This can be primarily the re-
sult of the Apenninic kinematic interference;

- Domain of Ligurian Alps/Tertiary Piemonte Basin/
Ligurian units p.p. This crustal segment records the com-
plex interactions in space and time between two evolving
and interfering Alps/Apennines system. The domain in-
cludes a segment of the axial Alpine system, the Ligurian
Alps, recording a peculiar syn to late-to collisional evolu-
tion characterized by a very fast exhumation occured as
soon after the inception of continental subduction recor-
ded in the Brianconnais/European crust. This process oc-
cured in a span time between 50 Ma - age of the early in-
volvement of continental subduction in Corsica southern-
most prolongation of the alpine system (Doglioni, 1991;
Molli, 2008, Molli and Malavieille, 2010; Doglioni et al.
this volume) - and the 35 Ma age of involvement of thin-
ned continental crust of the Dora Maira unit in the CMA
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(Ford et al., 2009; Beltrando et al., 2010; Dal Piaz this
volume).

The fast exhumation was possibly developed and en-
hanced within a transpressive zone which may have later-
ally constricted the subduction channel (Federico et al.
2007, Crispini et al., 2009) and thus accelerated extrusion

similarly to what occured some My later for the Dora
Maira (Ford et al., 2006). As alternative or concurrent
mechanism for the fast exhumation, a northward propa-
gation of the slab detachment could be envisaged (Molli,
2008; Molli and Malavieille, 2009; Molli and Mala-
vieille, 2010).

Figure 10. Conceptual 3D reconstruction of the Western Alps-Northern Apennine junction area at the latest Oligocene-
earliest Miocene.

At that time, two opposite dipping subduction system were active after Eocene subduction reversal affecting the
southern (Corsica-Liguria) segment of the Alpine system. In deep blue, axial Alps and their southern prolongation in Cor-
sica; in deep green, uppermost units of the alpine nappe stack, including the Chenaillet unit (Ch), the Helminthoid Flysch
units of Swiss Prealps, Embrunais-Ubaye and Ligurian Alps, the Antola unit, the Balagne (Ba), Nebbio and Macinaggio

units in Corsica; in light green, Ligurian and sub-Ligurian accretionary wedge of Apennines.

Thrust-sheet-top basins (B, Barrême; D, Dévoluy) and foreland basins on European crust according to Ford and Lick-
orish (2004); basins on Adria crust and atop the axial belt (E, Epiligurian basins; TPB, Tertiary Piedmont Basin) according
to Garzanti and Malusà (2008). Amount of shortening and lateral slip during Eocene – early Miocene as summarized by

Malusà et al. (2009) and reference therein. Southern face of the 3D model inspired by Doglioni et al. (1998) (CROP
M-12A, CROP-03, CROP M-16). Major faults: AR, Aosta-Ranzola; BF, Briançonnais; FPF, Frontal Pennine; IF, Insubric;

IHF, Internal Houiller; OS, Ostriconi; RF, Rio Freddo; SF, Simplon; ST, Stura; SV, Sestri-Voltaggio.

Beside paleomagnetic data (e.g. Collombet et al., 2002; Maffione et al., 2008), the interconnection between the
Southalpine part of the Adriatic foredeep, filled by the Gonfolite clastic wedge, and the Apenninic part filled by the Ma-
cigno-Modino clastic wedge (Garzanti and Malusà, 2008) is a strong argument supporting the Neogene rotation of the

whole Tertiary Piedmont – Ligurian Alps block.

The axial domain of the LA were later on rapidly buried
under shallow to deep-water sediments as result of the

inception of the opposite west-ward Apenninic subduc-
tion starting to the south (Doglioni, 1994; Molli, 2008;
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Malusà et al., 2008; Molli and Malavieille, 2010). A par-
tial reshaping of the deep structure with the presence of
the Ligurian Moho testified the “Apenninic” reworking
of this crustal sector;

- Domain of the NA shows accretionary wedge units
(the Ligurian/sub Ligurian nappe stack) overlying conti-
nental derived basement (Alpi Apuane) but mainly de-
tached cover units Adria-derived. The nappe stack in the
westernmost part of the belt was strongly excised during
Mid-Late Miocene sin-contractional exhumation of the
deeper wedge units related with east-ward retreating of
Apenninic subduction and later on (from Pliocene to
present ) further thinned by crustal-scale extension (Mol-
li, 2008 and references).

The deep configuration of the major domains forming
the Western Alps/Northern Apennine junction area can
be therefore considered as the result of the complex inter-
ference of different orogenic processes such as the late
collisional indentation of Europe and Adria, the develop-
ment of structures related with opposite dipping subduc-
tion after a subduction flip and the kinematic develop-
ment of the northern Apennines in a frame of slab retreat
with the related opening of the backarc Liguro-Provençal
basin and then the Tyrrhenian sea in the wake of Apen-
ninic subduction.

The different structures formed during this complex
geodynamic evolution are still far to be completely well
understood and between others two major still open prob-
lems are hereafter highlight:

i) The problem of the rotation pole/pole(s)
One kinematic problem related to the Western Alps/

Northern Apennine junction area concerns the back rota-
tion of the LA and TPB basin after the preliminary retro-
deformation of structures developed since the end of ro-
tation c.16 Ma onward.

The kinematic balancing has to address the question
of location of a single and fixed pole or the successive
poles and the way in which they migrated in space and
time. Moreover, the whole rotation model vs. differential
block rotation or domino-like accomodation are different
kinematic solutions with obvious major implications for
the retro-deformation of the structures.

To unravel this problem an accurate 3D-balancing
(Schumacher and Laubscher, 1996; Piana and Polino,

1995; Mosca et al., 2009) of the major structures has to
be achieved by combined structural, sedimentological
and paleomagnetic data altogether with the new
acquisition of high resolution 3D-seismic profiles.

ii) The role of the Pyreneean-Provençal deformation
and its heritage

The geology of the junction area and the relationhips
between Alps and Apennines have been described in this
paper as a kinematic problem of the structural heritage of
a former single and continuous orogenic system (the pre-
Late Eocene Alps) partially reworked during the develop-
ment of a younger “Apenninic” orogenic system (from
the Late Eocene onward). However, another important el-
ement plays a possibly relevant, although almost un-
known role, that is the eastern prolongation of the North
Pyrenean fault and the development of the Pyrenean oro-
gen itself (Malavieille, 1983; Lacombe and Jolivet,
2005). These structures were active and formed during
Eocene times in response to the displacement and colli-
sion between the Iberia and the European plate (Lagab-
rielle and Boudinier, 2008 and ref.). The Pyreneen oro-
gen and related structures found their prolongation on
land with the Languedoc-Provençe belt, undersea in the
Gulf of Lyon, and further east north of Corsica where one
might expect an interference with the Late Eocene Alpine
system (Fig.10). Complex structures are to be expected in
such an area now in part reworked in western Liguria, a
point still demanding focussed analyses.

In conclusion, although highly debated for more that
one century the subject of the relationships between the
Alps and the Apennines is a still uncompletely solved
problem. The Western Alps/Northern Apennine junction
area, in particular, hides and preserves most of the solu-
tions of this 3-D kinematic problem therefore it might be
considered a sort of type area for studying the geological
processes occurring at interfering orogens, thus challeng-
ing present and future research.
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