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Discussion on the rheological factors influencing the complexity of
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Abstract: Most natural folds are complex fractal folds. The fractal dimension of a fold can indicate its
complexity and its ability (or degree) to fill a space. The folding and its associated fractal dimensions
are affected by many factors; e.g. thickness, viscosity, multiple layers, layer parallel shortening, strain
softening, initial perturbation, other instabilities, preferred wavelength, non-linear material and layer
anisotropy, even the bond between layer and matrix, and many other unknown factors in which the
thickness and viscosity of the layer are important. Assuming only two factors (viscosity and
thickness) control the complexity of folds in the buckling of a single layer, a formula is derived in this
paper to represent the relation between fractal dimension (D) and rheology properties including the
layer thickness (h) and viscosity (µ). Information about rheology can potentially be gained from
analyzing the fractal geometry of folds. The rheological formula of fractal folds shows that the fractal
dimension of folds is affected by the coupling of thickness (h) and viscosity (µ) of a single layer. In
conclusion, a thicker layer with higher viscosity may more easily develop more complex folds with
higher fractal dimensions, filling more space than a thin layer with lower viscosity. A higher contrast
of viscosities or thickness between two layers can yield a larger difference (D1-D2) between two
fractal folds. This paper gives a theorical explanation for Ramberg’s experiment.
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Introduction
Though various methods of describing or characteriz-

ing the geometrical characteristics of folds have been
proposed (Fleuty, 1964; Ramsay, 1967; Wilson, 1967;
Elliot, 1968; Stabler, 1968; Hudleston, 1973a; Fletcher,
1977, 1979; Ramsay & Huber, 1987; Twiss, 1988; John-
son & Pfaff, 1989; Bastida, 1993; Grujic et al., 2002; Sri-
vastava and Lisle, 2004), the mechanisms of folding con-
tinue to be difficult to study in the field of structural geol-
ogy, as the folding deformation is rheologically depend-
ant. This is far more complex than simple elastic defor-
mation, highly variable fold geometries are generated de-
pending on the rheological properties of what are usually
non-linear materials.

Single-layer buckling has attracted the attention of
theoreticians and experimentalists for nearly half a centu-
ry. It's understanding is considered to be a key step to in-
terpreting the complexity of natural folding and deforma-
tion. Ramberg (1960, 1964) and Biot (1961, 1964) pro-
posed the theoretical and physical models to explain the
rheological mechanism of single-layer buckle folding.
The initial perturbation affects the buckling of a single-
layer (Mancktelow and Abbassi, 1992; Zhang et al.,
1996, 2000). The stress and strain are considered to be
important factors affecting the buckling (Treagus and So-
koutis, 1992; Jeng et al., 2002). Lan and Huddleston
(1996) employed finite elements to study the sharpness
and development of buckle folds by curvature and finite
strain, and suggested that two basic material properties
affecting fold shape include non-linearity and anisotropy.
They also discussed the rheological properties in numeri-
cal models (Huddleston & Lan, 1993, 1994; Lan & Hud-
dleston, 1991, 1995, 1996). These studies are only con-
cerned with simple buckling and agree that viscosity and
thickness are the two most important factors affecting the
buckling of a single-layer, but the coupling of two factors
in complex fractal folds has not yet been studied.

Many factors affect folding and the fold complexity;
e.g. the thickness, viscosity, multiple layers, layer paral-
lel shortening, strain softening, initial perturbation, other
instabilities, preferred wavelength, non-linear material
and layer anisotropy, even the bond between layer and
matrix, and many other unknown factors (Chapple, 1969;
Fletcher, 1974,1977; Huddleston, 1973b; Abbassi and
Mancktelow, 1990; Huddleston and Lan, 1994a, 1994b;
Ramberg, 1964; Ramsay and Huber, 1987; Treagus,
1973, 1981, 1992; Zhang et al., 1996; Mancktelow,

1999), in which the thickness and viscosity of any layer
is important. The question to be asked is: How does the
coupling of thickness and viscosity affect the complexity
of folds?

In this paper, we combine fractal theory with rheology
to investigate how the fractal dimension (D) of complex
folds is affected by the coupling of viscosity and thick-
ness in single-layer buckling.

Natural complex fractal folds
Most natural folds are not as simple as those gener-

ated by physical and numerical models, producing folds
that are smooth and linear. Natural folds are usually com-
plex, nonlinear and composed of many orders of folding
of different magnitudes. The anticlinorium and synclino-
rium commonly developed in any orogenic belt are self-
similar, called a fractal pattern. In the field, the so-called
'S','Z','M' and 'W' parasitic folds are observable from dif-
ferent parts of some outcrop-scale folds. This scaling
property of the folds ranges from tens of kilometers of
compound folds in orogenic belts, to folds in outcrop and
sample scale, and even to micron scale, indicating that
the natural folds are of the fractal geometry (Wu, 1993).
The anticlinorium and synclinorium are formed by super-
imposing smaller scale folds. The order of a complex
folds is distinguished from the neutral surfaces or the en-
veloping surfaces of the fold (Turner & Weiss, 1963,
Ramsay, 1967, Ramsay & Huber, 1987). Natural folds
commonly have three orders (Figure 1).

Figure 1. Fold with three orders identified

The model showing a fold with three orders identified by
the neutral surfaces of the fold

Self-similarity of structure is an important characteris-
tic of fractal geometries, in which any portion of the sys-
tem is a scaled-down version of the whole ( Mandelbrot,
1983 ). A feature of a fractal geometry is that the relative
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numbers of large and small elements remain the same at
all scales between the upper and lower fractal dimension,
which is simply derived from the power-law exponent on
a plot of log ruler (l) vs. log cumulative number(N) (For-
mula 1) (Mandelbrot, 1983).

Most natural folds are complex, variable, and develop
many fold orders with self-similarity in fractal patterns.
They can therefore be described quantitively by fractal
geometry (Wu, 1993, Hou, 1998). Complex folds can be
simulated by fractal interpolation and classified into dif-
ferent populations by their complexity relative to the
fractal dimension D (Hou, 1998).

Where D is the fractal dimension of the fold, with a
value between 1.0 and 2.0 in two dimensional space.

A fractal fold profile is, defined by Mandelbrot
(1983), as a curve with a fractal dimension (D) greater
than its topological dimension. A topological dimension
is an integer such that a discrete point has a topological
dimension of zero, a curve of 1, and so on. The fractal
dimension of a fold profile describes how much of the
two-dimensional space it fills. The fold with bigger am-
plitude and more orders of folding means it fill more of
the space, and so its fractal dimension is larger. If a fold
profile consists of a simple line without any curve, its
fractal dimension D = 1. If a fold profile is so complica-
ted that it almost fills the entire space, its fractal dimen-
sion D will be close to 2. Thus, most fractal fold profiles
have a fractal dimension 1 < D < 2 (Wu, 1993; Hou,
1998). Thus, the complexity of a fold can be described by
the fractal dimension (D), with more complex folds usu-
ally having a larger value of D (e.g. Figure 2). Obviously,
the fold with D of 1.48 (correlation coefficient=0.996) is
more complicated than the fold with D of 1.38 (correla-
tion coefficient=0.996).

There are two basic types of fractals: one is self-simi-
lar, the other is self-affine (Mandelbrot, 1985), and both
are statistically defined (Power & Tullis, 1991). The self-
similar fractal fold has a constant amplitude-to-wave-
length ratio, while an important aspect of a self-affine
fractal is that the self similarity is not universal and
changes with scale (Wu, 1993, 1995). Most natural frac-
tal folds are self-affine fractals.

Figure 2. Two fractal folds with different complexities

Two fractal folds with different complexities (different frac-
tal dimensions)

A: Folds in banded hornblende gneiss in the core of the
Maggjia Nappe from Fusio, Ticino, Switzerland;

B: Folds of calc-silicate layers in marble,Neoproterozoic de-
posits in the Khan River Gorge, Central Namibia

Rheological factors of complex fractal folds
Complex buckle folds with multiple orders can devel-

op in isolated stiff layers in a less stiff matrix, a multilay-
ered package where individual layers vary in composition
and thickness, and also in homogeneous but anisotropic
materials. Single-layer folds are much less variable than
multilayered folds, so in this study, we restrict our inves-
tigation to complex folds developed by the buckling of a
single isolated viscous layer in a less viscous matrix.

A very simple geometry is considered in this model,
namely a single isolated layer within a homogeneous ma-
trix deformed under conditions of pure shear, with the
shortening direction parallel to the layer. This geometry
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is similar to that employed in many previous experiments
using both elastic and viscous materials (e.g. Biot et al.,
1964, Ramberg, 1964; Huddleston, 1973b), also, approxi-
mately symmetric single-layer folds are fairly common in
nature (Sherwin & Chapple, 1968, Cobbold et al.1971).
Most natural folds are highly variable and complicated
due to the fact that they usually result from the rheologi-
cal deformation on a geological time scale. For complex
folds, the rheological deformation forms the major com-
ponent while elastic deformation is negligible (Biot et al.,
1964, Ramsay, 1967).

Many factors affect fold shape and development.
There are too many unknowns to deduce rheological
properties unambiguously from populations of natural
folds. If a reasonable assumption about the form of the
initial wavelength spectra is made, if strain in the compe-
tent layers can be measured independently, and if aniso-
tropy is unimportant, estimates of rheological parameters
can be made (Fletcher, 1974). Based on the experimental
and theoretical rheology models, Biot (1964) and Ram-
berg (1964) proposed the theory of buckle folding, which
predicts that, for a system consisting of an isolated stiff
viscous layer in a less viscous matrix subject to layer-par-
allel pure shear, all harmonic components that are present
in the initial irregularities of the layer interfaces will be-
come amplified, with a maximum rate of growth occur-
ring for the 'dominant wavelength' (Biot, 1964, Ramberg,
1964, Fletcher, 1974). For Newtonian materials, the dom-
inant wavelength is a function of the thickness and the
viscosity ratio, of which the expression can be given as:

Where Li is the dominant wavelength, µi is the viscos-
ity of the layer i, µ0 is the viscosity of matrix, and hi is
the thickness of layer i. The formula (2) also represents
that, for Newtonian materials, the ratio of dominant
wavelength to thickness is a function only of the ratio of
viscosity of the stiff layer to the viscosity of the matrix.

The bigger the viscosity contrast between a stiff layer
and the matrix is, the faster initial folds will grow. Two
separated layers develop different folds during the layer
parallel shortening in the same matrix, and seem to un-
dergo different shortening. In fact, the layers and matrix
undergo the same quantitive layer parallel shortening, but
the contributions of layer parallel shortening and buckle

folding are varied in different layers with other viscosi-
ties and thicknesses (Ramberg, 1964, Ramsay & Huber,
1987).

Here, we assume a model where the complexity of
fractal folds is only affected by the viscosity and thick-
ness in a single-layer buckling scenario. In comparison,
two layers with different viscosities and thicknesses are
each in a matrix with the same viscosity, given in the
models (Figure 3).

In a matrix with viscosity of µ0, layer 1 with viscosity
ofµ1 and thickness of h1, and layer 2 with viscosity of µ2
and thickness of h2, both develop fractal buckle folds 1
and 2 at the same strain, their dominant wavelength are
L1 and L2, which are given by:

Based on the fractal theory (Mandelbrot, 1983, 1985,
Falconer, 1990), the relationship between the fold arc
Li(l) measured by the scale factor l and the dominant
wavelength Li is given by:

Where L i, the dominant wavelength of fold i, is a ref-
erence length for normalization (Figure 1), Di is the frac-
tal dimension of fold i, Ci is constant in equation (5).

For fold 1, the equation (6) is given by

For fold 2, the equation (7) is given by

The equation (8) is given from equation (6) and (7)

Where l is the scale factor, C = C2 / C1,
C(l) = L2(l) / C1(l), L1 is the dominant wavelength of
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fold 1, L2 is the dominant wavelength of fold 2, L1 (l) is
the arc length of fold 1 measured with respect to the scale
factor l, L2 (l) is the arc length of fold 2 measured with
respect to the scale factor l. D1 and D2 are the dimen-
sions of fold 1 and fold 2 respectively.

Equation (9) is obtained from the equation (3) and (4):

thus, equation (10) is obtained from (8) and (9):

or

Figure 3. Four possible models of buckling in an incompetent
matrix.

(a) Layer 1: long wave folding with more contribution from
shortening. layer 2: easily develops snake folds. Layer 2 is

more complex than layer 1 in where h1 > h2, µ1 >µ0 and µ2
>>µ0.

(b) Layer 1: easily develops complex folding with different
orders, layer 2: small wave folding with more contribution
from shortening. Layer 1 is more complex than layer where
h1 > h2, µ1 >> µ0 and µ2 > µ0.

Figure 4. The results of buckling experiment

The results of buckling experiment in different rheological
conditions where strain is constant (after Ramberg, 1964).

µ4 >µ2 >µ3 >µ5 >µ1 >µ0, h5>h3>h2>h1>h4

(µ1, µ2, µ3, µ4, µ5 and µ0 are the viscosities of layer 1, 2,
3, 4, 5 and matrix respectively, h1, h2, h3, h4 and h5 are
thicknesses of layers 1, 2, 3, 4, and 5 respectively)

Based on the characteristics of fractal geometries, the
dimension D is not related to the scale factor l, so C(l) is
a variable constant related to l, but doesn't change the
fractal dimension D. The difference (D1-D2) represent-
ing the complexity contrast between two fractal folds is
controlled by the ratio of viscosities (µ1/µ2 ) and ratio of
thicknesses (h1/h2 ) between two folds. The larger con-
trast of viscosities or thickness between two layers can
yield greater difference (D1-D2) between two fractal
folds. In nature, the viscosity contrast (µ1/µ2 ) is com-
monly much bigger than the ratio of two thicknesses (h1/
h2 ). The viscosity contrast, therefore, plays a more im-
portant role in affecting the complexity of buckling folds
of a single-layer than the thickness if only two factors
(viscosity and thickness) are considered in the buckling.
If the viscosity contrast is large, the fold will grow in am-
plitude at a rapid rate. The layers 2 and 4 are competent
layers, developing more complex fractal folds than other
incompetent layers (Figure 4). At a small or moderate
viscosity contrast, there is a rapid increase in layer thick-
ness by layer-parallel shortening and a slow growth of
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fold amplitude (Figure 5a). In the same strain condition,
the competent layer experiences more buckle folding
than layer parallel shortening, while the incompetent lay-
er experiences more layer parallel shortening than buckle
folding (Figure 5 a, b and c).

Figure 5. Viscosity and thickness constraints

Viscosity and thickness constraints on the shape of fractal
folds (after Ramsay & Huber, 1987).

(a) Folds with various viscosities (µ1>µ2>µ3>µ4>µ0,
h1=h2=h3=h4), a higher viscosity contrast in a layer allows
more buckle folding, µ1/µ0 > 50, 50 > µ2 / µ0 > µ3 / µ0 >
10, µ4 / µ0 < 10.

(b) Thicker competent layer (black) with greater amplitude
and wavelength.

(c) The thicker of the two competent layers (black) has
greater amplitude and wavelength.

The thickness of a layer also affects the complexity
and harmony of folds. The thickness of a single-layer can
control the shape of folds. Two single-layers with a high-
er thickness ratio are more disharmonic (Castro & Cash-
man, 1999). Assuming the same strain condition is ap-
plied, the thicker layer can develop a larger dominant
wavelength and have more chance of developing com-
plex folds with higher fractal dimensions than a thin lay-
er, while the thin layer only develops small wavelengths
(Figure 5 b and c). Layer 3 and 5 develop more complex
folds than layer 1 (Figure 4). In general, a thicker layer
with higher viscosity more easily develops more complex
folds with larger fractal dimensions, filling more space
than a thin layer with lower viscosity (Figure 3,
comparing layer 1 with layer 2).

The equation (10) suggests that the coupling of at
least two factors (viscosity and thickness) can produce
different fold shapes and make complex folds. Otherwise,
the fractal dimension difference between two folds can
indicate the harmonic degree. Two folds are harmonic if
the difference of two fractal dimensions (D1-D2) is zero.
The larger the difference between the fractal dimensions
of two folds is, the larger the disharmonic degree. This is
supported by folds observed in the field (Castro & Cash-
man, 1999).

The formula (10) gives a theorical explanation to the
experiment shown in Figure 4 and the formula is expan-
ded to explain the complexity of the folds. In fact, the
complexity of a fractal fold is affected by both the vis-
cosity and thickness of a layer. This is a coupling effect,
for example: a thick soft layer cannot form a complex
fold and is mostly undergoes layer-parallel shortened.
The complex folds with large fractal dimensions result
from the coupling of greater thickness and higher viscosi-
ty of a single-layer. In the buckle folding experiment, a
thin competent layer can easily develop folds with a
small wavelength, and a thick layer can develop folding
with a big dominant wavelength. Therefore the thick
competent layer can develop complex folds with varying
characteristic wavelengths in different orders of folding.
The viscosity and the thickness contrast between layer
and matrix are very important in affecting the complexity
of fractal folds. In nature, a thick layer with a low viscos-
ity contrast usually develops layer-parallel shortening,
the thin layer with high viscosity usually develops ptyg-
matic folds, and commonly the thick, competent layer de-
velops complex folds including many orders. In conclu-
sion, the coupling of two rock properties (viscosity and
thickness) can produce complex folds and affect the frac-
tal dimension of complex folds.

Conclusion
Natural folds are too complex to know which rheolog-

ical model best suits them due to the uncertainty about
the mechanical flow laws appropriate to complex geolog-
ical conditions. Fractal geometry is an effective theory to
describe the complexity of folds. This paper combines
fractals and rheology to study the rheological mechanism
of buckle folding and derives the formula for this rela-
tionship, also suggesting that the viscosity and thickness
are very important factors affecting the complexity of
folds. The coupling of two factors is only studied in
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qualitative analysis, and is not yet confirmed by the limi-
tation of two factors in quantitative analysis. A quantita-
tive analysis should be investigated to understand how
these two factors work in affecting the complexity of
fractal folds in future. Otherwise, the complexity of fold-
ing is not controlled by a unique rheological factor, but is
affected by the integration of the various rheological fac-
tors. The paper simply tries to give a theoretical explana-
tion for Ramberg's experiment.

In fact, many rheological factors affect the complexity
of folds, for example, layer parallel shortening, strain
softening, initial perturbation, other instabilities, prefer-
red wavelength, non-linear material, layer anisotropy,
even the bond between layer and matrix, and many other
unknown factors. In the models suggested in this paper,
only viscosity and thickness are assumed to affect the
fractal dimensions of single-layer buckling. The fractal

dimension of single-layer buckling is influenced by the
coupling of viscosity and thickness in the models. In con-
clusion, a thicker layer with higher viscosity more easily
develops more complex folds with greater fractal dimen-
sions, filling more space than thin layer with lower vis-
cosity. Further experiments need be done in various con-
ditions to investigate the rheological factors which affect
the complexity of folds. This opens the potential for fu-
ture work in the study of complex fold rheology.
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