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Abstract: We present a numerical model for the formation of fractures in rocks at grain
scale. The model is based on a discrete approach using a spring network in combination
with the "Elle" platform for the simulation of microstructures. In the model grains are
defined by clusters of particles that are themselves connected by linear elastic springs
that can break. In order to test the model we performed simulations of extension and
shortening of a single layer, pure shear deformation of an aggregate with a statistical
distribution of grains and studied fracture networks around expanding grains. We in-
vestigated the dynamics of fracture propagation, the geometry of fracture patterns and
stress distributions as well as the rheological behavior of different materials. The model
produces patterns found in natural systems and shows dynamics and behavior of fractures
that is in agreement with theoretical models. This type of numerical model offers there-
fore a useful tool to study specific problems concerning fracture development in
polycrystalline rocks.
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Introduction

Brittle deformation of rocks is a very important defor-
mation mechanism in the upper crust of the Earth and at
deeper levels if strain rates are high or fluids are involved
[Ranalli 1995; Scholz 2002]. Rocks can only sustain very
small amounts of strain in the linear elastic regime and fail
afterwards [Means 1976]. Failure takes place by the de-
velopment and propagation of fractures [Jaeger and Cook
1979]. If failure localizes in planar zones, cataclasites will
develop in which cohesion of material along grain boun-
daries is lost and grain size is reduced by intragranular
fractures [Price and Cosgrove 1990].

Fractures are generally classified into extensional frac-
tures (Mode | fractures) and shear fractures (Mode Il
fractures) [Price and Cosgrove 1990; Pollard and Segall
1987]. Mode I fractures develop parallel to the compressive
stress and perpendicular to the tensile stress. Since they are
oriented perpendicular to the tensile stress they are opening
and can be filled with vein material. Mode Il fractures are
oriented at an angle of less than 45° to the compressive
stress. Sliding takes place along these surfaces but they are
not opening so that they seldom contain vein material. A
combination of mode | and mode |l fractures, so termed
hybrid shear fractures [Price and Cosgrove 1990] with a
smaller angle to the compressive stress than shear fractures
show shear displacement plus opening. Which type of frac-
ture develops depends on the stress field and the micro-
structure of the specimen [Jaeger and Cook 1979]. During
progressive deformation different types of fractures may
develop successively [Toussaint and Pride 2002].

In addition to their orientation, shape and spacing of
fractures is of general interest. These parameters may give
insight into the rheology of fractured material and the de-
gree of deformation it has experienced [Price and Cosgrove
1990]. The distribution of fractures, their shape, spacing
and formation of three-dimensional networks are also im-
portant in the understanding of fluid flow, waste dispersal
and the characterization and modelling of oil reservoirs.

Fracture dynamics is a complex phenomenon since the
propagation of fractures can be highly non-linear. Griffith
(1920) already ascribed the low strength of material under
tension to stress concentrations at tips of micro-cracks that
pre-exist in most materials. Once a micro-crack propagates
stress concentrations at its tips will increase which even-
tually leads to large-scale failure of the material. Under
compression the material behaviour is more complex [Mo-
gi 1962]. The link between microscopic and macroscopic

behaviour may not be simple under these conditions [Lock-
ner 1998; Okui and Horii 1997; Hazzard et al. 2000] and
transitions between different failure types probably exist
[Toussaint and Pride, 2002]. Crack tips may also become
unstable under certain conditions and show branching
[Marder 1993].

Several models have been proposed to simulate frac-
ture-development in two-dimensional systems on different
scales (e.g. Hazzard et al. 2000; D’Adetta et al. 2001;
Muhlhaus et al. 2001 and references therein). Molecular
dynamic models are concerned with fractures at atomic
scale whereas models in statistical physics and disordered
systems investigate macroscopic behaviour. The latter type
of model use simple elements that are representing clusters
of grains and have average properties. We present another
type of model where we use elements that are smaller than
the grain scale so that clusters of elements represent single
grains. This allows us to model fracture dynamics on a
macroscopic scale that includes the effects of the underly-
ing microstructure.

Model Approach

We developed a two-dimensional discrete element code
("Mike") based on the work of Malthe-Sgrenssen et al.
(1998) and combined this model with the simulation envi-
ronment "Elle" [Bons 2000; Jessell et al. 2001, 2003;
Piazolo et al. 2001,2002]. The combination of both models
allows us to investigate elastic-brittle behavior of complex
polycrystalline or layered microstructures. Therefore we
can study the influence of microstructural properties on the
macroscopic brittle behavior of rocks.

In the discrete element code rigid circular discs or par-
ticles are connected with linear elastic springs. Particles are
arranged in a triangular lattice so that each particle has a
maximum of six neighbors ( Figure 1). Such a configura-
tion reproduces macroscopic linear elastic behavior [Flek-
koy et al. 2002]. The force acting on a single particle from
a connected spring is proportional to the actual length of
that spring minus its equilibrium length multiplied by a
spring constant. Compressive stresses in the model are thus
negative. A particle is in equilibrium when the forces acting
on the particle center from different directions cancel out
so that the particle has no momentum and will not tend to
move. Springs have a predefined breaking threshold that is
defined as a critical tensile stress. Once this tensile stress
is reached a spring breaks and is removed from the model.
The two affected particles that were connected by the
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spring still have a repulsive force between each other but
lack attractive forces.

Figure 1. Six Neighbours

-

A spring

particle

X

In the discrete element code we use a triangular lattice
where each particle is surrounded by six neighbours.
Particles are connected by linear elastic springs.

The two dimensional model has the geometry of an in-
itially square area termed the deformation box. Rows of
particles on the left and right hand side as well as at the top
and bottom of the deformation box are defined as wall-
particles ( Figure 2 ). Sidewall and bottom wall-particles
are fixed in space perpendicular to the boundary of the box.
In order to deform the box wall-particles are moved in-
wards or outwards to apply compression or extension.
Since wall-particles can move parallel to the walls the
boundaries do not apply friction. Each time a boundary is
moved or a spring breaks in the model a new equilibrium
configuration for the lattice is calculated. This is done by
a standard over-relaxation method [Allen 1954, Shaw
1953] as described briefly below. In the model each time a
wall is moved and the lattice is strained each particle is
moved assuming homogeneous deformation. This will re-
move strain gradients that may result from boundary effects
and speeds up the relaxation. Once homogeneous strain is
applied the relaxation starts to find a new mechanical equi-
librium within the network. Forces on single particles are
calculated and particles are moved relative to the resulting
force towards their new equilibrium position. In order to
attain a more effective relaxation of the whole lattice it is
over-relaxed, which means that particles are moved an

over-relaxation factor beyond their equilibrium position.
This procedure is repeated until a lower threshold is
reached that defines the equilibrium of the lattice where
particles are stationary. After the lattice reaches force equi-
librium the model checks whether or not a spring has
reached its critical tensile stress. If this is the case the spring
with the highest probability to break will do so and a full
relaxation cycle starts again. This procedure is repeated
until no more springs break and a new deformation step can
start ( Figure 3).

Figure 2. Deformation box

The boundaries or the deformation box are defined by
wall-particles. These are shown in brown colour in the
figure. Wall-particles are moved in order to strain parti-
cles in the box. Wall particles can move parallel to the
wall but are fixed perpendicular to it (free slip bounda-
ries). Therefore the walls are frictionless.
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Figure 3. Flow of the Program Figure 4. "Elle" data structure
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Flow of the Program. First a deformation step is applied
on the input structure. After the deformation a relaxation
starts in order to find a new equilibrium lattice geometry.
Once force equilibrium is reached the program checks
if a spring exceeds its tensile strength. If this is the case,
the spring with the highest probability to fracture will
break and the system is relaxed again. The loop will op-
erate until no more springs fracture. Then the next de-
formation step is started.

In the "Elle" environment, grains are defined by grain-
boundary nodes that are connected by linear elements. In
order to combine the "Elle" data-structure with the network
of particles in the discrete model the discrete particles
present a second layer on top of the "Elle" layer ( Figure
4 ). Particles that lie within an "Elle" grain polygon are
defined to be part of that grain. Springs that connect parti-
cles of one particular grain will have specific elastic con-
stants and breaking thresholds. Springs connecting two
particles of neighbouring grains will have the average
spring constant of the two grains and a breaking strength
that is characteristic for grain boundaries. In all the pre-
sented simulations the grain boundaries are assumed to
have a breaking strength that is on average half of the
intragranular breaking strength.

boundaries

Coupling between the discrete element code and the
"Elle" data structure. Elle nodes and connections be-
tween these nodes define polygons that may represent
grains. Particles that lie within such a polygon are de-
fined to be part of that grain and have the same proper-
ties.

Disorder in the system is induced by randomly selecting
elastic constants from a Gauss distribution for each grain
and randomly selecting breaking thresholds of springs
from a linear distribution. Anisotropies in the model can be
set by defining layers with different elastic properties. In
the presented simulations models consist of 184800 parti-
cles for medium resolution and 737600 particles for high
resolution. First we will show the development of fractures
in a competent layer embedded in a weaker matrix under
pure layer parallel extension and compression. Then we
will show the development of fractures in polycrystalline
materials under pure shear conditions and finally we will
discuss fracture patterns around grains that increase in vol-
ume. In all simulations we apply a constant strain rate.

Numerical Experiments

Parameters in the simulations are scaled as follows:
Strain is dimensionless, the height and width of the defor-
mation box is initially 1.0, and the Poisson ratio of the
triangular lattice is 0.33. The elastic constant of springs is
by default 1.0. Stresses and tensile strength of springs are
scaled with the elastic constant. The tensile strength of
springs is by default 0.006. Grain boundary springs are
weaker with respect to the default value and distributions
of breaking strengths are set around the default value. In
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most presented simulations only the elastic constant is var-
ied. This will produce higher or lower stresses in the model
at the same strain and will thus induce fracturing at lower
or higher amounts of strain. In order to relate model-pa-
rameters with real-rock values the elastic constant can be
scaled, which then automatically gives real values for stress
and tensile strength. Scaling-examples are given in the fol-
lowing paragraphs.

Fracturing of layered material under
extension and compression

We performed two simulations with a competent layer
that is embedded in a weaker matrix. The initial micro-
structure is presented in Figure 5a . The smaller grains in
the centre make up the vertical competent layer. A resolu-
tion of 184800 particles is used (400x462). The elastic
constant of grains in the competent layer (non-dimensional
value of 1.0) is 100 times larger than that of matrix grains.
The tensile strength of all grain-boundary springs is half
the tensile strength of intragranular springs and has a non-
dimensional value of 0.003. For this simulation the numer-
ical parameters can be scaled to real rock values as follows.
If we assume that the elastic constant of grains in the com-
petent layer is 10 GPa (for example) then the breaking
strength of grain boundary springs is 30 MPa and grains in
the matrix have an elastic constant of 0.1 GPa.

Figure 5. Initial microstructures

Two different initial microstructures used in the simula-
tions. See text for further explanation.

In the first simulation the layer is extended uniaxial with
incremental steps of 0.0025 percent strain ( Animation 1).
Colours inthe animation represent differential stress where
blue colours indicate low (0.0) and red colours high (0.003
times elastic constant) differential stresses ( Figure 6 ). In
the simulation the stress within the more competent layer

rises because it has a larger elastic constant than the matrix.
After a while a horizontal stress gradient develops within
the vertical layer. Differential stresses are higher at the in-
terface between the competent layer and the matrix than in
the centre of the layer. This is an effect of the matrix-layer
contact where horizontal stresses are almost zero because
of the weak matrix. Geometrical irregularities at the inter-
face of the competent layer to the matrix concentrate stress-
es where the competent layer is thinner. Once these stress
concentrations reach the tensile strength of the springs
three fractures develop almost simultaneously and break
the whole layer. They show a characteristic spacing, which
is found in many natural examples of fractures or joints
[Price and Cosgrove 1990]. The fractures develop simul-
taneously in the model because the tensile strength is
reached at the same time at a number of localities along the
interface. Once a small fracture forms it will have even
higher stress concentrations at its advancing tip because
stress scales with the length of the fracture and its tip cur-
vature [Griffith 1920; Jaeger and Cook 1979]. Therefore
the fracture will cross the whole layer instantaneously be-
cause stress concentrations at its tip are beyond the tensile
strength of springs and even increase during propagation
(Figure 7). Fracturing will reduce the tensile stress in the
competent layer and strain is localized within the fracture
while it is opening. The affected area of stress release due
to fracturing in the competent layer has a characteristic
length-scale, which produces the regular spacing of frac-
tures in the layer. A fourth fracture propagates across the
layer shortly after the development of the three initial frac-
tures.

Figure 1. Stiff vertical layer embedded in a weaker
matrix

Stiff vertical layer embedded in a weaker matrix under
layer parallel extension. Colours show differential stress
where red is high and blue low stress. Mode | fractures
develop in the layer and show a characteristic spacing.
See main text for further explanation.
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Figure 6. Stress scale for the simulations

Stress scale for the simulations. Red is high differential
stress and blue low differential stress. If the pressure is
shown in the simulations then blue colours indicate high
and red colours indicate low pressure (horizontal normal
stress plus vertical normal stress components).

Figure 7. Differential stress concentrations

Differential stress concentrations at the tip of a fracture.
The layer is extended vertically. The blue colour on the
left hand side represents the weaker matrix. The fracture
grows from the matrix into the stiff layer. Stress concen-
trations at the fracture tip drive the propagation of the
fracture through the stiff layer.

The stress distribution between two neighbouring frac-
tures has a characteristic geometry ( Figure 8 ). Differential
stresses are highest at the interface to the matrix and low
in the middle of the layer and next to the existing fractures.
New fractures will therefore tend to develop at the interface
to the matrix and in the middle between two existing frac-
tures. This happens towards the end of the simulation
where a new fracture develops and crosses the layer so that
the spacing between fractures is reduced with increasing
strain. Once this secondary fracture initiates at the interface
to the matrix it can propagate across the layer due to stress
concentrations at its tip even if the stress in the centre of
the competent layer is not tensile. In addition to the devel-
opment of new fractures that reduce the spacing the four
initial fractures localize strain while they open. However,
opening does only effectively reduce stress if the fractures
are straight. Since the initial fractures propagate mainly
along grain-boundaries they show some curvature and brai-
ded geometries. These geometries hinder opening so that
additional small-scale fracturing around the existing frac-
tures is necessary in order to accommodate strain. This
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successive fracturing results in fluctuations of the stress in
the layer throughout the animation. Once the bulk stress in
the competent layer reaches the tensile strength of springs
(red colour) new small-scale fractures develop and release
the stress suddenly or a large fracture develops between
existing fractures and reduces fracture spacing.

Figure 8. Stress distribution

Stress distribution between two fractures in a stiff layer.
Extension is vertical. The fractures are localizing strain
and are opening. Differential stress is high at the inter-
face to the matrix but low in the centre of the stiff layer.
Therefore successive fractures will tend to initiate at the
interface of the stiff layer to the matrix.

The second simulation shows a uniaxial compression of
the same layer ( Animation 2 ) with a strain of 0.06 percent
per deformation step. The colours represent differential
stress where blue indicates low (0.0) and red high (0.01
times elastic constant) differential stresses ( Figure 6 ). The
strength of the layer under compression is 3.3 times higher
than its tensile strength. The initial stress pattern is similar
in extension and compression with high differential stress-
es at the interface to the matrix and stress concentrations at
irregularities. While these stress concentrations grow,
small mode I tensile fractures develop in regions with high-
est differential stresses ( Figure 9 ). These fractures are
oriented with their long axis parallel to the maximum com-
pressive stress. The behaviour of these mode | fractures is
completely different compared to the fast propagating

fractures during extension ( Animation 1 ). Under com-
pression stress concentration at the tips of the small mode
| fractures are not high enough to support propagation.
They cannot release compressive stress within the layer;
they can only accommodate extension perpendicular to the
shortening direction when the layer bulges.

matrix and

Figure 2. Weaker

compression

layer parallel

Stiff vertical layer embedded in a weaker matrix and lay-
er parallel compression. Colours show differential stress
where red is high and blue low stress. Mode | fractures
grow first, cluster into shear bands and lead to a transi-
tion where large scale shear fractures or faults cross the
layer and induce failure. See main text for further ex-
planation.

Figure 9. Transition between mode | and mode I
fractures

Transition between mode I and II

o 5 b %
, LY
= = by .&
% %
T X .. X h P
- . IE . '.f -'1..

Mode I Mode I Mode II Failure at

fractures fractures fracture Mode II

develop cluster info propagates fracture
shear bands into cluster (or fault)

Transition between mode | and mode Il fractures in a
stiff layer under layer parallel compression. Stresses
concentrate at geometrical irregularities on the interface
of the stiff layer. Mode | fractures form in bands of com-
pressive stresses and cluster in these bands. Later
mode |l type shear fractures develop out of the mode |
clusters and form large-scale shear faults across the stiff
layer. See main text for further explanation.

During progressive shortening of the layer regions of
high stress concentrations from each side of the layer merge
and form conjugate bands of high stress across the layer
with an orientation of about 45° to the shortening direction.
Small mode | fractures successively cluster in these bands.
Finally shear or mode Il fractures start to develop along the
small mode | fractures within bands of high stress and
propagate across the layer with an angle of less than 45° to
the shortening direction. The shear fracture at the top of the
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layer forms a through-cutting fracture or fault along which
slip takes place. The second shear fracture that develops at
the lower left of the competent layer propagates towards
this fault but does not merge with it and instead curves to
become parallel with the fault. Both shear fractures or faults
are repelling each other, which results in a distinct spacing.
Close to the interface of the competent layer to the matrix
sets of conjugate shears develop along the faults. Strain is
mostly localized in the upper fault where significant slip
takes place so that even the incompetent surrounding ma-
trix is fractured at the fault tip.

The development of small mode | fractures, clustering
of mode 1 fractures into bands and transition to mode 1l
shear fractures can be theoretically predicted [Toussaint
and Pride 2002] and is found in similar models [Hazzard
et al. 2000] and real rock experiments [Lockner et al.
1991]. Mode Il shear fractures in the second simulation (
animation 2) have a different spacing than the mode | frac-
tures in the first simulation (animation 1). Spacing of mode
Il fractures is narrower and seems to be influenced by the
spacing of initial irregularities on the interface, which is
connected to the initial grain size in the model. Mode 1l
fractures split grains in contrast to mode | fractures that
tend to develop along grain boundaries. Mode Il fractures
are more straight than mode | fractures since they are not
opening butaccommodate slip which is less efficient if they
are not straight.

Fracturing of polycrystalline material with a
statistical distribution of grains

Two simulations were performed to investigate the de-
velopment of fracture patterns in polycrystalline aggre-
gates under pure shear deformation. The initial microstruc-
ture of the aggregates and the resolution of the models
differ. The first simulation has the same initial microstruc-
ture as Animation 1 and 2 ( Figure 5a ), whereas the
second simulation has a microstructure with smaller grains
( Figure 5b ). The resolution of the first simulation is
184800 particles (400x462) and the second simulation has
a resolution of 737600 particles (800x922). Both simula-
tions have distributed elastic constants for different grains
and a distribution of tensile strengths of springs. The elastic
constants of grains are distributed randomly and follow a
Gauss distribution with a given mean m and the standard
variation s. The resulting polycrystalline aggregate has a
mean elastic constant of m. The tensile strength of springs
is dispersed using a linear distribution with a given

minimum and maximum value. Spring constants are chos-
en randomly within this distribution for all springs. Chang-
ing the width of the spring distribution changes the material
behavior. Although the mean breaking strength will not
change, the weakest springs act in a similar way to micro-
flaws in the Griffith model [Griffith 1920] and concentrate
stresses once they break. On a macroscopic scale this will
result in a weaker strength of the material if the distribution
is larger. Another effect is that material with a wider dis-
tribution of breaking strengths of springs will behave less
brittle than a material with a very narrow range of breaking
strengths. Once the tensile strength is reached in an aggre-
gate with a narrow distribution failure will take place
almost simultaneously throughout the whole deformation
box. A wide distribution will produce initially a localiza-
tion of failure at a restricted number of springs, which
results in a more "ductile™ behavior of the material on large
scale.

The lower resolution simulation is shown in Animation
3 and Animation 4 , animation 3 illustrates the fracture
pattern and animation 4 the differential stress. The higher
resolution simulation is shown in Animation 5 where the
fracture pattern is highlighted in order to compare it with
animation 3. Both simulations are performed with pure
shear boundary conditions where compression is vertical
and extension horizontal. The Gauss distribution for elastic
constants of grains is the same for both simulations with a
mean elastic constant m of 2.0 and a standard variation s
of + - 0.3. The distribution of the breaking strength of
springs is different for both simulations; the distribution is
narrower in the first simulation and wider in the second
simulation (0.0048-0.0072 and 0.0036-0.0084). The mod-
els are deformed with a stepped compressive strain of 0.06
percent and the area of the deformation box is kept con-
stant. Colors in animation 3 and 4 show the pressure, which
is the sum of the normal stress in the vertical and horizontal
direction. Particles that have broken springs appear in blue.

Figure 3. Polycrystalline rock

Polycrystalline rock with a statistical distribution of
grains under pure shear deformation. Colours indicate
the pressure and particles with fractured springs are
blue. At first mode | fractures develop and are followed
by mode Il shear fractures. Both show a distinct spacing.
See main text for further explanation.
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Figure 4. Development of the differential stress

The same simulation as animation 3 showing develop-
ment of the differential stress. See main text for further
explanation.

Figure 5. Large resolution simulation

Large resolution simulation similar to animation 3 but
with a wider distribution in breaking strengths of springs.
The evolution of structures is similar in animation 3 and
5 but animation 5 shows more dispersed development
of fractures due to the wider distribution in breaking
strengths.

At first the distribution of elastic constants for different
grains can be seen when grains show different stress-col-
ors. Initial fractures start to develop around grains with
higher elastic constants where tensile stresses are highest.
They soon start to form larger scale mode | fractures that
are oriented roughly parallel to the compressive stress.
Mode | fractures develop first since the tensile strength of
the aggregate is less than its compressive strength. The
fractures reduce the tensile stress in the horizontal direc-
tion. Three large fractures develop initially with a distinct
spacing. The polycrystalline material in animation 3 has a
narrower distribution of breaking thresholds than that of
animation 5, so that it behaves more brittle. Animation 5
shows a material with a wider distribution of breaking
thresholds and consequently behaves more ductile, frac-
tures are more dispersed, cluster in pairs and show a spac-
ing that is not as distinct as the spacing in animation 3.

Mode | fractures in both simulations cannot relax the
compressive stress. Therefore shear fractures develop
shortly after the development of the extensional fractures.
These shear fractures form conjugate sets with an angle of
about 35° to the compressive stress. They are propagating
relatively straight in animation 3 where they cross most
grains. They also tend to cross mode | fractures but some-
times merge into them. They are often repelled at the
boundaries of the model. A characteristic spacing seems to
exist but it is not as clear as the spacing of mode I fractures.
If slip takes place along mode Il fractures new small con-
jugate sets of shear fractures develop along the original
fracture due to friction. Slip along shear fractures is the
main mechanism to reduce compressive vertical stresses.
Animation 5 shows a more continuous transition from
mode I fracturing through hybrid shears or coupled exten-
sion and shear fracturing to pure mode Il fractures. Con-
jugate sets of shear fractures develop at the same angle of

35° to the compression as in animation 3. The shear-frac-
ture pattern of animation 5 is different to that of animation
3 because of a wider distribution of breaking thresholds of
springs in animation 5. This produces a more dispersed lo-
calization of fractures so that these are more irregular and
not as straight as the shear fractures in animation 3. How-
ever, one has to note that the finite strain in animation 5 is
lower than that of animation 3 so that in animation 5 sig-
nificant slip along shear fractures has not yet taken place.

Animation 4 shows the differential stress in the low-
resolution simulation. The stress scale is the same as the
one in the previous chapter where red represents high dif-
ferential stresses and blue low differential stresses. The
initial stress distribution reflects the distribution of elastic
properties of grains. Once mode | fractures develop they
cause stress concentrations at their advancing tips (yellow
to red) and they relax stresses while they grow (blue). Once
shear fractures develop they separate regions of high stress
(yellow to red) from regions of low stresses (blue). In order
to reduce the compressive stress significantly slip takes
place along shear planes. The initial mode | fractures plus
shear fractures produce columns that support the vertical
load. At the end of animation 5 the column in the middle
of the deformation box fails through a large scale shear
fracture and the stress within the whole column is suddenly
released (becomes blue). This failure is similar to the one
that took place in animation 2 where a vertical competent
layer was shortened. The differential stress in the whole
deformation box increases upon loading, it drops shortly
once mode | fractures run through the whole box, increases
again and drops significantly once mode Il fracturing pro-
duces failure of load supporting columns. The development
and size of these columns is influenced by the initial spac-
ing of mode | and mode 11 fractures.

Expansion of single grains

Temperature and stress changes as well as the addition
of fluid to a natural system may induce the growth of new
minerals, which may include an increase in volume. This
will lead to fractures in the surrounding matrix, which will
enhance the permeability of a rock and influence its rheol-
ogy. In this paragraph we show an example of fracture
patterns that develop around several expanding grains.
Animation 6 shows the fracture network and the pressure
and Animation 7 the differential stress. The grains are
forced to expand by increasing the radius of the intragrain
particles by 0.01 percent per time step. A linear distribution
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is used to disperse the breaking threshold of springs and
grain boundaries are weaker as described above. No de-
formation is applied at the boundaries of the deformation
box, instead the area of the box remains constant (walls are
fixed).

Figure 6. Expansion of grains

Expansion of grains that produces branching crack pat-
terns. Animation shows fracture pattern (blue colour)
and the pressure.

Figure 7. Colour scale showing the differential stress

Same as animation 6 but with a colour scale showing
the differential stress. See main text for further explan-
ation.

The fracture network that develops ( Animation 6 )
shows no preferred orientation because no external aniso-
tropic stress is applied. Fractures form around the expand-
ing grains and grow in a number of directions into the
matrix. They branch once they have reached a character-
istic distance from the expanding grain. Fractures tend to
follow grain boundaries due to lower breaking thresholds
but may also cross grains. In addition to the fractures that
grow from the expanding grain into the matrix grain boun-
daries may also fail in front of the main fracture.

The differential stress in animation 7 is highest around
the expanding grains. The stress initially forms rings
around the expanding grains with the highest stress at the
contact between the grain and the matrix. This geometry
changes once fractures develop into the surrounding ma-
trix. Fractures separate regions of high stress values from
regions of low stress values. This suggests that they are
shear fractures where compressed grains (regions of high
stress) slide against regions of low stress. Each time the
differential stress reaches a certain value next to the ex-
panding grain (red colour) a new set of fractures develops
or fractures propagate further into the matrix in order to
relax stresses again. Load supporting grains between
neighbouring expanding grains start to form stress bridges.

Discussion

The presented model offers the possibility to study frac-
ture dynamics of rocks with varying initial microstructures.
The model reproduces realistic behaviour of brittle mate-
rials. It is able to reproduce transitions between different
types of fractures, shows realistic differences between

materials under extension versus compression and produ-
ces realistic fracture patterns with a distinct spacing and
geometry. Similar transitions from Mode | small-scale
fractures toward large scale shear faults were found in ex-
periments [Lockner et al. 1992], theoretical models [Tous-
saint and Pride 2002] and similar numerical approaches
[Hazzard et al. 2000]. Hazzard et al. (2000) present a failure
study mimicking compression tests with a commercial dis-
crete element code (PFC). They compare their results with
real rock experiments and conclude that this type of micro-
mechanical model can reproduce real rock experiments
including the full dynamics of crack propagation. The
models also reproduce realistic stress-strain relationships.
The different macroscopic behaviour of material in our
simulations with varying distributions for fracture strength
is similar to the results of Mogi (1962) who realized that
the fracture process strongly depends on the degree of het-
erogeneity of materials. The material with narrow distri-
butions of breaking strength in our simulations is more
homogeneous and fails more suddenly whereas the mate-
rial with a wide distribution behaves more ductile and
shows small scale crack growth preceding failure. These
differences are fundamental for earthquake prediction
[Mogi 1962] and can be modelled with the presented ap-
proach. In addition this discrete type of model was found
to reproduce the visual and statistical properties of fracture
patterns from clay extension experiments [Malthe-Sgre-
nssen et al. 1998]. The fracture patterns seen in animation
6 are similar to discharge patterns found during dielectric
breakdown [Niemeyer et al. 1984] and colloidal aggrega-
tion, which have statistical similarities to natural fracture
patterns [Meakin 1988].

The presented model can be used to simulate brittle
failure in polycrystalline aggregates as shown. It is how-
ever also possible to combine the model with dissolution
kinetics [Koehn et al. this volume], fluid pressure to model
hydro fractures [Flekkay et al. 2002], to use random lattices
in order to avoid anisotropies of facture networks, to in-
clude visco-elastic behaviour and to evolve to a three-
dimensional geometry. The model can have a very high
resolution ( Animation 5 ) in order to avoid effects of the
discreteness of particles. Models up to two million particles
are possible without using parallel coding since computer
power has increased significantly over the last years. The
model is not limited to any scale so that orogenic processes
or metre scale faulting may be modelled as well as struc-
tures on a small scale as shown here.
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A problem of the presented model is the triangular ge-
ometry of the network. It has the advantage that it repro-
duces linear elasticity on a large scale. However, it has the
disadvantage that fracture propagation is not necessarily
isotropic. Especially shear fractures along which slip takes
place may develop along lattice directions. One possibility
to suppress lattice directions is to define on the one hand a
network of grains where grain boundaries break easier and
on the other hand a distribution of spring strengths that is
isotropic. This combination can help to avoid anisotropies
of fracture networks due to the geometry of the underlying
lattice. The distributions of breaking strengths work rather
well with mode | fractures that show no preferred lattice
orientation but is problematic for shear fractures. However,
even shear fractures curve in the models ( Animation 2 )
and change their propagation direction suggesting that the
anisotropy of the underlying lattice is not that important.
The same applies for the branching structures in animation
6 where a number of different orientations exist that are not
triangular. However, small-scale anisotropies may still ex-
ist even with large distributions of spring breaking
strengths.

Conclusion

A combination of a discrete particle code with elastic
particle interactions and the possibility to fracture was cou-
pled with the numerical model "Elle” in order to study
fracture development in complex layered and polycrystal-
line materials. A number of simulations have been carried

out to test the behaviour of fractures in the model and the
developing patterns. The model produces realistic behav-
iour and spacing of mode | fractures during layer parallel
extension and a theoretically predicted transition from
mode I to mode 11 fractures during layer parallel compres-
sion. The behaviour of the model during pure shear defor-
mation is also realistic and shows an expected initial
development of mode I fractures due to low tensile strength
of the material and a later propagation of shear fractures
along which slip takes place. Fracture patterns around ex-
panding grains produce isotropic patterns that are similar
to dielectric breakdown that has similarities to natural frac-
ture patterns. We conclude therefore that the model can be
used to simulate brittle behaviour of materials and has a
large applicability in future research.
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