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Abstract: We present a new method to study the free surface dissolution of stressed
solids. The model couples a thermodynamic/kinetic approach with an elastic discrete
element model. In the model we mimic experiments where we stress a crystal vertically
and let it dissolve. The reaction is either progressing on a free surface of the crystal in
contact with fluid or from an initial hole in the crystal. Once the elastic solid is stressed
it develops an instability in the form of a roughness on its free surface. This so called
Asaro-Tiller-Grinfeld instability is well known in Physics from thin-film overgrowth
studies. It was also recently reproduced on stressed crystals of brittle elastic salts. The
simulations show that the surface roughness progresses towards cusp instabilities that
can develop into grooves and into crack-like structures or anti-cracks. The roughness
has a characteristic size or wavelength that depends on the elastic and surface energies
in the model. A comparison with linear stability analysis, experiments and other nu-
merical approaches shows that our model reproduces reasonable results. The localization
of dissolution in anti-cracks that propagate into the crystal can introduce the growth of
secondary mode I cracks along the anti-crack. These fractures show a similar charac-
teristic scaling behavior than the structures that are produced by the Asaro-Tiller-
Grinfeld instability. Combinations of anti-cracking and cracking may cause grain-size
reduction and failure.
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Introduction
Dissolution precipitation creep is an important defor-

mation mechanism in the Earth's crust. It plays a major role
in the compaction of sedimentary basins and in the building
of mountain chains [Weyl 1959; Rutter 1976; Spiers et al.
1990; Schwartz and Stöckert 1996]. The mechanism in-
volves dissolution of material at sites of relatively high
stresses, transport through a fluid phase and precipitation
of material at sites of relatively low stresses. Most research
has focused on the dissolution at confined contacts between
grains [Paterson 1973; Lehner 1995; Schutjens and Spiers
1999; Dysthe et al. 2002 a, b]. However, recent experi-
ments and theoretical considerations indicate that free sur-
face dissolution may also be important [den Brok and
Morel 2001; den Brok et al. 2002]. In the present paper we
focus on free surface dissolution of stressed crystals and
illustrate how concentrations of elastic energy can lead to
instabilities and localization of dissolution.

At the contact of a crystal to the fluid, dissolution and
precipitation are driven by differences in chemical poten-
tial along the interface. On free interfaces shear-forces in
the fluid can be neglected so that changes in the chemical
potential can be defined as [Gibbs 1906; Kamb 1961; Pa-
terson 1973]

where μ is the chemical potential, ψs  the Helmholtz free

energy of the solid, Vs  the molecular volume of the solid

and Pfl  the fluid pressure and the deltas represent changes

in these values relative to a reference state. The Helmholtz
free energy contains contributions due to surface, elastic
and plastic energy. In the present study we focus on surface
patterns on stressed elastic crystals in contact with fluid so
that we neglect effects of plasticity. Patterns on the surface
will then depend on competition between local elastic and
surface energies as long as the fluid pressure does not
change.

Recent experiments on brittle elastic salt crystals show
the development of a roughening instability on the free
solid/liquid interface [den Brok and Morel 2001; den Brok
et al. 2002]. In the experiment a crystal of an elastic salt is
stressed vertically while its surface is in contact with under-
saturated brine. The crystal surface develops a roughness

that consists of grooves oriented with their long axis per-
pendicular to the main compressive stress direction. The
roughness on the crystal surface has a distinct spacing or
wavelength that depends on the stress state of the crystal
and its surface energy [Srolovitz 1989]. The grooves on the
crystal surface develop because the chemical potential (
Equation 1 ) is higher when the crystal is stressed so that it
dissolves. Stress concentrations at troughs of the roughness
increase dissolution, which again has a positive feedback
effect on the stress. This effect is known as the Asaro-Till-
er-Grinfeld instability [ATG, Asaro and Tiller 1972; Grin-
feld 1986]. Linear stability analysis of the onset of the
ATG-instability [Srolovitz 1989] predicts that dissolution
structures will develop with a roughness that lies within a
band of stable wavelengths and thus have a characteristic
spacing as observed in the experiments [den Brok and
Morel 2001].

The progressive evolution of the ATG-instability and
the evolution of patterns beyond this instability have been
studied using numerical simulations [Yang and Srolovitz
1993; Ghoussoub and Leroy 2001; Kassner et al. 2001]. In
the simulations an initial roughness develops into cusp in-
stabilities and then evolves towards crack-like structures or
anti-cracks. In the current paper we will present a new ap-
proach to model the ATG-instability and its evolution
towards anti-cracks [Koehn et al. 2003] and grooves
[Koehn et al. 2004]. First we introduce the numerical meth-
od. Then we show the development of the initial ATG-
instability and compare the patterns with linear stability
analysis and existing numerical simulations. In addition we
illustrate the propagation of anti-cracks and finally present
combinations of anti-crack propagation and mode I crack-
ing (Mode I Fractures are tensile fractures that grow per-
pendicular to a tensile stress component, Anti-cracks are
lens shaped structures that grow by dissolution or reaction
at their tips perpendicular to a compressive stress).

The model
In order to model the dissolution of stressed elastic sol-

ids we use a hybrid approach. The dissolution rate is
calculated with a first order kinetic rate law from Transition
State Theory. It depends on the local Gibbs chemical po-
tential of the solid-liquid interface. The discrete element
model is used to calculate the stress and elastic energy dis-
tribution in the crystal after it is being loaded. The surface
energy is also determined from the elastic model and de-
pends on the number of springs that particles have towards
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boundaries, which is a function of the larger scale surface
curvature. Most parts of the simulations are performed with
the numerical model "ELLE" [Jessell et al. 2001], which
we have expanded by the discrete element code "MIKE".

Dissolution of Heterogeneously Stressed
Solids

In order to treat the dissolution of the stressed solid we
relate the change in chemical potential as defined in  equa-
tion 1 , which is due to a change in elastic or surface energy,
which are contained within the Helmholtz free energy
(Δψs ), to the change in local equilibrium concentration

(ΔC) of dissolved matter in the fluid by the relation:

where R is the universal gas constant and T the temperature

[Koehn et al. 2003]. The dissolution rate of the local surface
can then be calculated using a linear rate law following
Transition State Theory [Lasaga 1998]:

where D is the velocity of dissolution perpendicular to a

unit surface and kr  a rate constant depending on temper-

ature and activation energy. We assume that the fluid
volume is very large so that the concentration of dissolved
matter in the fluid does not change [Koehn et al. 2003] and
the dissolution rate depends only on the change in equili-
brium concentration of the fluid from a system with a non-
stressed crystal to a stressed crystal. This assumption is
valid for the case of the den Brok and Morel (2001) ex-
periment where the system was constantly slightly under-
saturated and the fluid volume very large.

Discrete Element Module

Figure 1. Two-dimensional networks

In the two-dimensional lattice that is used for the simu-
lations particles are arranged in a triangular network.
Each particle (except for boundaries) is initially connec-
ted with six springs to six possible neighbors.

The elastic crystal in a simulation is modeled using a
discrete element approach. In this model circular particles
are arranged in a triangular lattice and connected by linear
springs with each other ( Figure 1 ). In a triangular config-
uration each particle is connected with six possible neigh-
bors. The force on a particle from a spring is proportional
to the actual length of the spring minus an equilibrium
length times a spring constant so that compressive stresses
in the model are by definition negative ( Figure 2 ). The
equilibrium configuration of particles and the stress field
in the elastic crystal are found by a standard over-relaxation
method [Allen 1954]. Particles are moved until forces that
act on a single particle cancel out and an equilibrium con-
figuration for the lattice is found. It has been shown that
the triangular lattice in two-dimensions reproduces linear
elasticity on a large scale [Flekkøy et al. 2002]. Therefore
it can be used to model systems that behave linear elastic.

However, the model can describe the behavior of the
solid beyond linear elasticity by introducing the possibility
to break springs. Springs are broken once they reach a
breaking-threshold defined by a maximum local tensile
stress that one spring can sustain. If the tensile stress on the
spring is larger than the threshold it breaks and is removed
from the lattice so that the previously connected neighbors
loose their cohesion. All particles have repulsive forces
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between each other even if springs are removed and the
particles are not really connected. Single springs can never
break under pure compression. It has been found that frac-
tures that develop in the model are very similar to fractures
found in experiments [Walmann et al. 1996; Malthe-Søre-
nssen et al. 1998]. In order to add noise to the system to
minimize lattice effects a pseudo random distribution of
breaking thresholds and spring strengths can be applied to
the model [Koehn and Arnold 2003, this volume].

Figure 2. Particles under compression

Under compression particles are pushed into each oth-
er, under tension they move away from each other.
Springs can only break under tension. Particles are re-
pulsive so that they always have a compressive force
between them.

The discrete element model has three possible boundary
conditions that were used in the presented simulations:
Lattice boundaries, internal boundaries and three-dimen-
sional boundaries due to deformation estimates.

Two different lattice boundaries exist in the model (
Figure 3 ). These consist either of 1. a row of particles
(particle walls) along the boundary of the lattice or 2. elastic

walls along the rims of the deformation box. 1. Boundary
particles of particle walls are defined to be part of the lattice
boundary, which means that they are moved during a de-
formation step and then remain stationary during the re-
laxation. Boundary particle springs cannot break. 2. Elastic
walls are walls that act with a compressive force on the
particles where the force is proportional to the distance that
particles are pushed into the wall. Depending on the elastic
constants of walls relative to constants of normal particles
walls are either stiff (higher constant) or soft (lower con-
stant). Elastic walls apply no friction or tension on boun-
daries of the model in contrast to boundary particles.

Figure 3. External boundaries

Two possible external boundaries are applied in the
simulations. The picture on the left illustrates elastic
walls. Particles have repulsive forces on walls so that
the force on a particle from a wall is proportional to the
distance that the particle is pushed into the wall. Particle
walls are rows of particles on the boundary that are
moved only during a deformation step and stationary
during relaxation.

Internal boundaries of the model are grain or hole boun-
daries. Single grains are made up of a cluster of particles
that lie within a specified area ( Figure 4 ). Particles on the
rim of the grain are defined as being part of a grain boun-
dary. Springs that connect two grains and cross a boundary
can have different spring constants and different breaking
strengths than springs that lie within grains. Particles that
are on the rim of grains or holes can have surface energies
and can react with for example fluid in a hole. The surface
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energy depends on the absolute size of a particle and on the
number of springs that are part of a boundary. The number
of boundary springs then defines the surface curvature.

Figure 4. Clusters of particles

Grains A to E are defined by clusters of particles.
Springs between particles of different grains can have
different properties than springs within grains.

We apply deformation estimates. If a wall of the lattice
is moved inwards to stress a crystal all particles are moved
according to that deformation assuming that the material is
homogeneous. The relaxation starts after this average is
taken. Such a deformation estimate will remove boundary
effects from the walls. It will also have the effect that the
model is quasi three-dimensional so that even if the model
has no cohesion in two dimensions (for example a through-
going hole or crack in the center) it has a cohesion in three-
dimensions. Instead of applying deformation estimates one
can also attach springs to particles in the third dimension
and attach these to a homogeneously deforming sheet
[Malthe-Sørenssen et al. 1998].

Coupling

The discrete element code and the dissolution routines
are coupled in two ways. First of all the elastic energy and
surface energy of internal boundary particles in the discrete
code are used as input for the dissolution routines to cal-
culate a dissolution velocity (or reaction velocity) of a unit
surface. In a second step this dissolution rate is then used
to calculate a probability of how often a particle on the
boundary will dissolve in a given time step according to

where Da  is the dissolution rate for particle a from  equa-

tion 3 , ra  is the radius of particle a and Nspa   the number

of springs that are still attached to the particle. The last term
on the right hand side of  equation 4  is representative of
the particles circumference that is in contact with the fluid.
The 1/r term represents the size of the particle. For exam-
ple, a smaller particle has a higher probability to dissolve
than a large particle. A particle with 4 open springs has a
higher probability to dissolve than a particle with 2 open
springs because its reactive "surface" that is in contact with
the fluid is larger. Particles that shrink completely within a
given time step are removed from the discrete model. All
other particles shrink in area depending on their probability
to dissolve. The elastic model will not be influenced by the
reduction of a particle's area until the particle has com-
pletely dissolved and is removed from the elastic lattice. In
order to add noise to the system a pseudo random distri-
bution can be applied to the area of the particles. This will
only affect dissolution and not the effective size of the par-
ticle in the elastic model.
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Dissolution Patterns and Localization
of Dissolution

Figure 5. Initial setup of Animation 1 and Animation 2

Initial setup of Animation 1 and Animation 2, the resolu-
tion of the lattice is 1000 x 1000 particles. The crystal is
stressed vertically (with respect to the figure if it stands
upright) and can dissolve from the right hand side. An
initial roughness in the form of a sin-wave is applied to
the fluid-solid interface.

We choose to present the dissolution patterns that de-
velop on stressed crystal surfaces in three different sections
with three different initial setups. In the first section we are
concerned with the detailed development of the ATG-in-
stability on a crystal surface with a predefined roughness
that has a given wavelength and amplitude ( Figure 5
and  6 ). We choose this setup because it is used in linear
stability analysis [Srolovitz 1989; Gal et al. 1998] and in
numerical simulations of Ghoussoub and Leroy (2001).
Therefore we can compare the developing structures and
their dynamics directly to the presented method. In the sec-
ond section we are concerned with the propagation of anti-
cracks that develop out of the ATG-instability.

We choose a setup of a vertically stressed crystal in
contact with fluid on its sides and with a central elliptical
hole ( Figure 7 ). This setup is on the one hand similar to
the experiment of den Brok and Morel (2001) and on the
other hand we can compare the shape of the developing
anti-cracks with the structures that develop in the

simulations of Kassner et al. (2001). In the third section we
show the interaction of anti-crack propagation and growth
of mode I fractures on anti-crack walls in a stressed crystal
with a small central hole ( Figure 8 ). In the simulations
stresses are applied vertically with respect to stressed crys-
tals that stand upright.

Figure 6. Intial setup of Animation 3

Same setup as in  Figure 5  but with a sin-wave that has
a larger amplitude than that of Figure 5. Initial setup for
animation 3 .
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Figure 7. Initial setup of Animation 4 and Animation 5

Initial setup for  animations 4  and  5 . A crystal with a
central elliptical hole is stressed vertically (with respect
to the figure if it stands upright). The crystal is in contact
with fluid on its right and left hand side and within the
hole. The resolution of the lattice is 400 x 461 particles.

All the simulations were performed with kinetics for a
quartz and pure water system. Relevant system parameters
are (Rimstidt 1997): temperature (200°C), rate constant for
quartz dissolution at 200°C (1*10-7 mol sec-1 m-2

), Youngs modulus of pure quartz (90 GPa) and molar vol-
ume of quartz (22.688*10-6 m3 mol-1 ). The amount

of particles used for the simulations and their absolute size
varies.

Figure 8. Initial setup of Animation 6 and Animation 7

Initial setup of  animation 6  and  7 . The crystal is
stressed vertically (with respect to the figure if it stands
upright). Crystal can only dissolve from the boundary of
the small hole in the center. Resolution of the simulation
is 600 x 600 particles.
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Asaro-Tiller-Grinfeld Instability

Figure 1. Dissolution of a stressed crystal

Movie shows dissolution of a stressed crystal with an
initial roughness on its surface. Cusps develop but sur-
face energy is too high for the initiation of the ATG-
instability and the surface evolves to a flat shape. Color-
scale represents elastic energy where blue is high and
yellow low energy.

To model the initiation of the ATG-instability we
choose a setup similar to the one of Gal et al. (1998) and
Ghoussoub and Leroy (2001). A vertically stressed crystal
is in contact with fluid on the right hand side. The surface
has a predefined roughness with a wavelength that is a
fourth of the height of the box with an amplitude that is
0.025 * wavelength ( Figure 5 ) and 0.25 * wavelength (
Figure 6 ). The crystal is stressed once and the dissolution
patterns develop. We use resolutions of 1000000 particles
per box for the three simulations presented in this section
in order to attain patterns with a high resolution so that the
discreteness of the model has no influence on the results.
The boundaries of the model are made up of elastic walls.

Animation 1  shows a simulation with a predefined
wavelength of 3.3 µm and a small amplitude. The colors
represent the elastic energy where blue is high and yellow
low energy. The vertical stress on the crystal is 240 MPa
and the fluid pressure constant at a value of 24 MPa. At this
scale the ATG-instability is producing a localization and
small cusps but the surface energy is dominating over

elastic energies so that the patterns disappear and the sur-
face becomes flat. Once the surface is flat it remains flat
and dissolves with a constant dissolution rate that is in ac-
cordance with the theoretically predicted dissolution rate
from  equation 3 .

Animation 2  shows a simulation with a predefined
wavelength of 3.4 µm and also a small amplitude. The color
scale and the stress are the same as  animation 1 . Elastic
energy concentrations in the valleys of the roughness drive
dissolution as in  animation 1 . However the small change
in wavelength from  animation 1  to  2  of 0.1 µm is enough
to stabilize the roughness. The ATG-instability develops
again small cusps as in  animation 1  but now the elastic
energy concentration at the tips of the cusps is enough to
overcome the surface energy. The cusps develop into dis-
solution grooves that are similar to the grooves found by
den Brok and Morel (2001). Linear stability analysis [Sro-
lovitz 1989; Gal et al. 1998] predicts that a surface rough-
ness has to have a critical wavelength in order to develop
a growing ATG-instability. This critical wavelength lies
between the wavelength of the roughness in  animation 1
and  2 . However, whether or not the roughness survives is
also dependent on its amplitude. This is normally not in-
cluded in stability analysis except for the work of Ghous-
soub and Leroy (2001). A larger initial amplitude has a
stabilizing effect on the roughness since it produces higher
elastic energy concentrations.

This effect is shown in  animation 3  where the initial
amplitude is 0.25*wavelength and the wavelength 2.1 µm.
Now the wavelength of 2.1 µm lies within the region of
roughness growth and large-scale cusps develop out of the
initial roughness. In  animation 3  the cusp development is
smaller than the wavelength of the roughness so that the
initial localization develops within the valleys. Only later
does the structure grow towards large cusps that are on the
scale of the initial wavelength.
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Figure 2. Increased wavelength

Movie shows same setup as  Animation 1  but with a
roughness that has a slightly larger wavelength. Elastic
energy can now overcome surface energy and the ATG-
instability develops. Cusp instabilities evolve into
grooves on the crystal surface. Color-scale represents
elastic energy where blue is high and yellow low energy.

Figure 3. Increased amplitude

When the amplitude of the initial roughness is more pro-
nounced smaller wavelength roughness will also devel-
op the ATG-instability. Color-scale represents elastic
energy where blue is high and yellow low energy.

Growth of Anti-cracks

In order to illustrate the growth of anti-cracks we use a
setup where we stress a crystal with a central elliptical hole
vertically ( Figure 7 ). The crystal can dissolve from right
and left hand sides and from the initial hole. We apply a
strain rate on the crystal where the deformation takes place
in small steps of 0.06 percent strain per 10000 years. For
the simulations we use a lattice of 400 times 461 particles
with particle boundaries. The fluid pressure is zero. The
two simulations ( animation 4  and  animation 5 ) vary in
absolute size. In  animation 4  the crystal has a height of 4
mm and in  animation 5  a height of 0.8 mm. Colors in the
movies represent differential stresses where blue is zero
and red high differential stress (0-90 MPa).
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Figure 4. Stressed crystal with a central elliptical hole

Movie shows a stressed crystal with a central elliptical
hole that is in contact with fluid on its right and left hand
side and around the hole. A strain-rate is applied on the
crystal (see text for details). Dissolution localizes and
anti-cracks run into the crystal.

In  animation 4  the surface energy is smaller than in
animation 5  since the system is larger. However the surface
energy is high enough to smoothen irregularities on the
crystal surface at the beginning of the simulation. When the
crystal is strained differential stresses are high at the right
and left hand side of the hole and low at the top and bottom.
When the crystal is strained enough that the main stress
color changes to yellow small red stress concentrations can
be seen at irregularities on the surface of the crystal. Elastic
energy is now high enough to initiate the ATG-instability.
Dissolution localizes, cusp instabilities develop and grow
into anti-cracks that propagate into the crystal from its left
and right hand side and from the left and right hand side of
the hole. The wavelength of the structures is strongly in-
fluenced by initial irregularities on the crystal surface. At
first all these irregularities develop into anti-crack struc-
tures. However at the left hand side of the hole some of the
anti-cracks dominate their neighbors. This phenomenon is
similar to a period doubling instability and has been also
observed in numerical simulations of Kassner et al. (2001)
who use a phase-field approach to model fluid-melt sys-
tems.

The period doubling produces a coarsening of the pat-
tern [Koehn et al. 2003, 2004] since the wavelength of the
roughness grows. Sudden changes of the stress field

indicate additional loading steps while anti-cracks are
propagating. Additional loading leads to an increase in lo-
calization of dissolution until anti-cracks from the hole in
the crystal and the sides meet and merge. The effect that
the crystal is not collapsing at this point is due to the de-
formation estimates that are taken during the straining steps
and because no gravity is present in the simulations. Parts
of the crystal that are now completely surrounded by fluid
behave like single grains but can still be strained by minor
amounts due to the deformation estimates so that anti-
cracks can still grow. This can be seen as a three-dimen-
sional effect so that the crystal has still a cohesion in the
third dimension. Anti-cracks that propagate towards each
other and are not merging by coincidence first run past each
other for a short distance and then stop ( Figure 9 ). After-
wards a small anti-crack grows from the wall of a neigh-
boring anti-crack towards the neighbor's tip parallel to the
main compressive stress direction on the crystal.  Figure
9  illustrates that this unusual behavior is caused by a small
stress bridge that develops from a neighbor's tip towards
the anti-crack's wall. In the end the localization of disso-
lution produces a pattern with a distinct spacing of mostly
horizontal and some minor vertical anti-cracks. Surface
energies are again dominating and result in smooth edges.
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Figure 9. Two merging anti-cracks

Figure shows the progressive sequence of two merging
anti-cracks in  animation 4 . First the anti-cracks run past
each other for a short distance that is about the same as
the distance between them. Then they stop and small
anti-cracks grow from anti-crack walls towards tips of
neighbors. This results in rhomb-shape structures with
horizontal and vertical anti-cracks.

In  animation 5 , surface energy is more dominant than
in  animation 4  since the system is smaller. The crystal
dissolves from its sides and the hole for a while without
producing a pronounced roughness and no real localization
of dissolution. Flat cusp instabilities develop around the
hole with a small amplitude. At a certain amount of strain
the elastic energy is (similar to  animation 4 ) high enough
to overcome the surface energy and dissolution localizes.
This transition is almost instantaneous, as long as surface
energies are dominant the crystal surface almost remains a

stable structure but as soon as a critical elastic energy is
reached the surface becomes unstable and dissolution lo-
calizes. The system shows a period doubling instability
right at the point when dissolution localizes similar to the
instability seen in  animation 4 . Only three of the four in-
itial cusps on each side of the hole develop into anti-cracks.
The propagation of anti-cracks is similar to the behavior
in  animation 4  except for the spacing of the structures in
the end.  Animation 5  shows less anti-cracks und thus a
wider spacing than  animation 4 . A larger wavelength of
structures is expected since the system is smaller in  ani-
mation 5 .

Figure 5. Smaller system

>Movie shows the same setup as  Animation 4 , but the
system is smaller. Therefore surface energies are more
important initially than in  Animation 4 , small flat cusps
develop and the crystal dissolves slowly. Towards the
end of the movie the ATG-instability is suddenly initiated
and dissolution localizes.

Anti-cracks and cracks

Animation 6  and  7  show the interaction of anti-crack
propagation and mode I fracturing. In these simulations a
crystal with a small hole in the center is stressed vertically.
The upper and lower side are confined by elastic walls
whereas the right and left hand side are unconfined. The
crystal is represented by 600 times 600 particles, colors in
the animations represent differential stresses with the
scale-bar shown on the left hand side in the movies (red is
high and blue low differential stress). The crystal is strained
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once at the beginning of the simulations. While the anti-
crack grows it produces tensile stresses at its upper and
lower sides. These tensile stresses result in the propagation
of mode I fractures from the anti-crack walls. In the be-
ginning of anti-crack and crack growth in  animation 6  the
length of mode I fractures is proportional to the length of
the anti-crack. The longest fractures are the oldest in the
center of the propagating anti-crack and fractures grow
sub-critically with the anti-crack. After a while mode I
cracks show a period doubling instability in  animation 6 ,
only every second mode I fracture continues to grow. This
instability is very similar to the period doubling instability
of growing anti-cracks that was discussed in the last sec-
tion.

If tensile stresses are not large enough for all fractures
to continue growing the system goes through a period dou-
bling instability so that only half of the fractures continue
to grow. The instability is induced by stress-shielding ef-
fects of neighboring fractures. Only slight perturbations in
the system are enough to induce this period doubling which
results in a coarsening of the growing fracture pattern. Once
the anti-crack has reached a critical length mode I fractures
in the center stop to grow. However, while the anti-crack
propagates towards the sides of the crystal a new cluster of
mode I cracks grows on the left and right hand side of the
initial cluster in the center. These new two clusters have
larger mode I cracks in their center than the initial cluster
in the center of the crystal. This is probably due to higher
tensile stresses next to the boundaries of the crystal since
the boundaries are not confined.

Figure 6. Propagation of an anti-crack

Movie shows the propagation of an anti-crack from an
initial small hole and the development of mode I frac-
tures along the anti-crack walls. Crystal is stressed ver-
tically (with respect to the figure if it stands upright).
Colors represent differential stresses with the scale bar
shown on the left hand side in the movies (red is high
and blue low differential stress.

Animation 7  shows a similar simulation with a higher
breaking strength of springs, which results in a wider spac-
ing and smaller length of mode I fractures. The wavelength
of the fracture clusters does not seem to be influenced by
the breaking strength of springs, the wavelength is the same
for  animation 6  and  7 . Once the anti-crack reaches the
sides of the crystal mode II shear fractures develop and the
crystal fails.
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Figure 7. Increased breaking strength

Movie has the same setup as  Animation 6  but the
breaking strength of the crystal is higher. This results in
less mode I fractures. When the anti-crack moves to-
wards the walls of the crystal it induces failure. Colors
represent differential stresses with the scale bar shown
on the left hand side in the movies (red is high and blue
low differential stress).

Discussion
The presented simulations show that free surface dis-

solution of stressed crystals can initiate instabilities that
may lead to brittle failure and grain size reduction. The
simulation results are in accordance with predictions of
linear stability analysis of previous studies [Srolovitz 1989;
Gal et al. 1998]. The wavelength of the structures depends
on the elastic energy, which is a function of the strain on
the system, the elastic properties of the crystal and the free
surface energy. The surface energy is dependent on the size
of the system. For the ATG-instability the surface energy
mainly plays a role in the absolute size and shape of small
perturbations on the crystal surface that can trigger the in-
stability. This parameter is hard to quantify. If the crystal
surface is too smooth no instability will develop. However
if a strain rate is applied on the system the instability will
eventually be initiated in order to accommodate the strain
as long as no other mechanism takes over. If the breaking
strength of the crystal is reached before the instability de-
velops the crystal will simply fracture. If dissolution at
confined contacts is faster, strain will be released and the

instability will not develop. How important free surface
dissolution is in comparison with other mechanisms during
deformation has to be established. Recent experiments
however indicate that free surface dissolution can play a
major role in dissolution precipitation creep [Koehn et al.
2004].

The simulations shed light on a previously known dis-
crepancy between numerical models of the ATG-instabil-
ity and the experiments of den Brok and Morel (2001).
Numerical simulations by Ghoussoub and Leroy (2001)
produce cusp instabilities but no quasi-stable dissolution
grooves like the experiments of den Brok and Morel
(2001).  Animation 2  that was presented in section 3.1
shows clearly that the cusp instability is not necessarily
stable but can develop into groove like structures. How
stable these grooves are is not yet clear and needs to be
studied in a numerical model that includes dissolution as
well as growth and diffusion of mater in the fluid.

The question remains how fast systems will develop
anti-cracks that may initiate failure and under what condi-
tions grooves develop. This is not a straight-forward ques-
tion. Anti-cracks like the ones shown in section 2.2 that
develop out of rough surfaces have yet to be established in
experiments. There are however similarities to lens like
structures that develop at the olivine to spinel phase tran-
sition in the mantle of the Earth [Green and Burnley 1989].
However, the pressure maybe more important in the spinel
anti-crack structures than the elastic energy that drives the
ATG at free surfaces.

The discreteness of the model has to be treated with
care. If the particles are too large the dissolution of a par-
ticle by itself will trigger the instability. However the size
of the simulations presented in this paper should be suffi-
ciently large so that surface energies of single particles are
very high and the removal of a particle by itself does not
induce the ATG. This is definitely true for the simulation
shown in  animation 1  where a rough surface is smoothened
by surface energies. In this simulation the particles are
small enough so that a wavelength on the surface has to be
quite pronounced in order to let the roughness grow.

Conclusions
We present a method to model the dissolution of free

surfaces of stressed crystals in contact with a fluid. The
simulations are in accordance with linear stability analysis,
other numerical approaches to the problem and show sim-
ilarities to experiments. Free surface dissolution of a
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stressed crystal can lead to instabilities (ATG-instability),
which strongly localize dissolution. The localization is
transient and evolves from initial cusp instabilities to
grooves or anti-cracks. Anti-cracks propagating into crys-
tals may lead to brittle failure. Propagating anti-cracks
show a secondary instability, a period doubling that leads
to a coarsening of the structures. Anti-crack associated
mode I fractures grow sub-critically and develop the same
period doubling instability as anti-cracks. The simulations
suggest that there is a strong physical similarity between
cracks and anti-cracks. This is a further indication that anti-
cracks may be associated with earthquakes as are cracks.
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