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Abstract: Strain Machine, a Macromedia Director 8.5 program, and 9 interactive Flash 5  animations were 
developed to allow students a simple means of discovery through experimentation. Specifically, Strain Machine 
allows students to conduct simple and pure shear experiments while the 9 interactive Flash 5 animations 
emphasize the dynamics of the various components of experiments conducted with Strain Machine, and other 
geometrical and mathematical aspects of deformation and strain. 

The mathematical background necessary for students to use Strain Machine is provided as is an exercise that 
might be fruitfully applied in an introductory structural geology class. Executable versions of Strain Machine 
and the 9 interactive Flash animations used in this paper are freely downloadable at the authorʼs web site.

Keywords: structure, strain, pure shear, simple shear, plane strain, animations

Introduction

 The distortion of the Earthʼs crust is a dynamic process 
that occurs in a wide variety of tectonic environments. To 
completely understand how such distortions arise, as for 
example, from an initially isotropic granitoid or from a 
series of horizontal layers, undergraduate students need to 
first tackle the basic concepts of strain.

Strains accumulate in rocks as a result of the progressive 
displacement of particles. Such displacements are 
difficult to visualize through static illustrations like 
those encountered in textbooks. In an attempt to mitigate 
this difficulty, as well as other problems commonly 
encountered in teaching the principles of strain, a cross-
platform application called Strain Machine as well as 
several other interactive animations were developed in 
Macromedia Director 8.5 and Flash 5. Executable versions 
of Strain Machine for both the PC and Macintosh are free 
to download at the authorʼs web site as are executables of 
all Flash 5 movies used in this paper. Executable versions 
of Strain Machine allow students to print out the results 
of their experiments while the Shockwave (web-based) 
version accompanying this paper does not.

This paper was written for the undergraduate student 
and professional struggling with the concept of strain. In 
order to accommodate such readers I first briefly provide 
basic background information about strain, and then derive 
the two-dimensional strain transformation equations 
used in the development of algorithms implemented in 
Strain Machine. A brief description of the three steps 
taken to conduct an experiment with Strain Machine is 
then provided. Finally, I conclude with an exercise that 
focuses on learning the principles of simple and pure 
shear through the act of discovery and experimentation 
with Strain Machine.

Background

Deformation and strain are two terms that are used 
often in structural geology. Deformation of a rock body 
may involve a rotation, a translation, a distortion or strain, 
and a volume change or dilation (Twiss and Moores, 1992; 
Davis and Reynolds, 1996; Hatcher, 1996; van der Pluijm 
and Marshak, 1997). As you explore these relationships 
in Figure 1, note that strain is only synonymous with 
deformation if there has not been any volume change, 
translation, or rotation (e.g., van der Pluijm and Marshak, 
1997).

A Flash 5 animation of the 3D distortion of a crinoid 
column is provided in Figure 2. As you observe the 
distorting crinoid note that its cross-sectional area changes 
from that of a circle to that of an ellipse? But exactly how 
did this change take place? In other words, how were the 
particles along the surface of the crinoid displaced to yield 
the elliptical form? In order to address this question, we 
need to establish prior to distortion a set of reference points 
or lines on the object of interest so that we can measure 
how such features have changed after deformation has run 
its course (e.g., Ramsay and Huber, 1983).

Any geologist who has drawn a 3D mesh object in a 
modern day graphics program such as Carrara understands 
the idea that any imaginary or real object can be thought 
of as a series of points connected by lines. Utilizing this 
concept we then can view the end points of the ridges 
emanating from the center of a crinoid column as a set 
of material points. Material lines then are imaginary lines 
connecting any two material points in a rock body or 
fossil (e.g., lines R and R  ̓ in Figure 2) (van der Pluijm 
and Marshak, 1997).

Homogenous strain occurs when material lines that 
were parallel before a distortion remain parallel after 



the distortion (Fig. 3). A corollary of this statement is 
that a circle will be transformed into an ellipse during a 
homogeneous strain event (e.g., Fig. 2). If either of these 
two statements are not true, then strain is heterogeneous 
(van der Pluijm and Marshak, 1997). But how do we 
measure changes in the lengths and orientations of 
material lines? Below I discuss three parameters that are 
useful for such characterizations. Others can be found in 
Means (1976), Ramsay and Huber (1983), Ragan (1985), 
Twiss and Moores (1992), Hatcher (1996), Reynolds and 
Davis (1996), and van der Pluijm and Marshak (1997).

Elongation (e), a dimension-less quantity, is expressed 
as

(1)

where l is the strained length, and lo is the original length 
of some measurable material line. For example, if the 
material line labeled R in Figure 2 were increased during 
a distortion from 6.21 to 9.07 cm, then the elongation 
would be:

In other words, the length of line R was increased by 
an amount equal to 46% of its original value. Positive 

values of elongation represent an increase in length while 
negative values represent a decrease.

Stretch (s) is the ratio between (l) and (l0). In the 
symbolic language of mathematics it is

    (2)

where, l and lo are as defined in the previous paragraph. 
Stretch also can be expressed as

 (3) 

Returning for a moment to the distortion of line R in 
Figure 2,

Thus, stretch tells us that the length of the distorted line 
is 146% of its original length. Values of stretch greater 
than 1.0 represent elongations while values less than 1.0 
represent shortening.

Shear strain (γ, gamma), is expressed mathematically 
as

           (4)

where the angular shear strain (ψ, psi), is the change in 
angle of two initially perpendicular lines (Fig. 4). 
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Figure 1. The four components of deformation.  Select an item and the click on the Play button. (Select image for interactive HTML version)

Figure 2. To distort the crinoid column by plane strain pure shear click 
on the Distort button.  R and R  ̓are two material lines that are shortened 
and lengthened during the distortion. (Select image for interactive 
HTML version)

Figure 3. Select a type of strain and then click on the Play button.  
(Select image for interactive HTML version)

http://www.virtualexplorer.com.au/2002R/Bobyarchick/Girty/figure1Girty.swf
http://www.virtualexplorer.com.au/2002R/Bobyarchick/Girty/figure2Girty.swf
http://www.virtualexplorer.com.au/2002R/Bobyarchick/Girty/figure3Girty.swf


In Figure 4, following the imposed distortion the change 
in angle between the initially vertical and horizontal lines 
is 24º; hence,

As ψ increases from 0 to 90, tan (ψ) increases from 0 to 
infinity. In other words, large values of γ reflect greater 
amounts of shear strain and rotation than do smaller 
ones.

The Strain Transformation Equations

Distortion is a non-rigid body operation that produces 
a change in the shape of a body with or without a change 
in its volume. Plane strain is a specific type of distortion 
involving no volume change; hence, it is isochoric (Ragan, 
1985). Simple and pure shear represent two end member 
types of plane strain (Twiss and Moores, 1992; Ferguson, 
1994; Davis and Reynolds, 1996; Hatcher, 1996; van der 
Pluijm and Marshak, 1997).

Simple Shear
In simple shear the displacements of particles are 

constrained to lie within a plane of shear (Twiss and 
Moores, 1992; Ferguson, 1994; Davis and Reynolds, 
1996; Hatcher, 1996; van der Pluijm and Marshak, 1997). 
For example, consider some point a(x, y) lying within a 
domain of potential simple shear with a coordinate system 
like that shown in Figure 5. If the plane of shear is parallel 
to the x-axis, then after an increment of simple shear point 
a will not move parallel to the y-axis, but will be translated 
parallel to the x-axis to some new position aʼ(xʼ, yʼ) (Fig. 
5). The distance v is the amount that point a is translated 
parallel to the y-axis, while u is the distance it is translated 
parallel to the x-axis (Fig. 5). Vector h then is the resultant 
of these two components. From Figure 5 it follows that

 (5)

Rearranging and solving for h yields

(6)

Therefore

(7)

or upon simplifying

 (8) 

Recall that the shear strain, γ, is tan(ψ), and that under the 
conditions of simple shear, no displacement parallel to the 
y-axis is permitted; hence, v = y, and the distance from x 

to x  ̓is u = γ*y (Fig. 5). Putting these relationships in terms 
of coordinate transformations we then have

 (9)

and   
         
(10) 

Expressing these equations in matrix form we write

(11) 

Pure Shear
Pure shear describes the change of points in a body 

relative to each other without the constraint that particle 
displacements can only occur parallel to some shear plane. 
For example, consider some point a(x, y) lying within a 
domain of potential pure shear with a coordinate system 
like that shown in Figure 6. After an increment of strain 
this point will be translated to some new position aʼ(xʼ, 
yʼ).

In Figure 6, xdef and xundef are the horizontal distances 
from the y-axis to points aʼ and a respectively. The ratio 
xdef/xundef  is the fractional change in position parallel to the 
x-axis that aʼ has undergone relative to its original position 
(cf., Ramsay and Huber, 1983). As discussed earlier, this 
ratio is simply the stretch in the x-direction, i.e., (e + 1) 
(Fig. 6). Thus, the coordinate transformation equation for 
xʼ is

 (12) 

Now, recall that pure shear is a constant volume process. 
This constraint implies that the area occupied by the 
brown rectangle in Figure 6 has to be the same as the 
area of the blue rectangular region, which represents its 
deformed equivalent.

Mathematically, we then write

 (13) 

The right hand side of equation (13) is equivalent to xdef 
* ydef (Fig. 6). Substituting this information into equation 
(13) and rearranging yields

(14) 

However, Areablue also equals xundef  * yundef , and we 
therefore write

(15) 
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From equation (12) and Figure 6 we know that xdef  = 
[(e+1) * xundef ]. Substituting for xdef in equation (15) and 
canceling similar terms yields

 (16) 

Finally, we note that ydef is simply y  ̓and that yundef  is y. 
Hence, the coordinate transformation equation for y  ̓is

 (17)

Equations (12) and (17) also can be written in matrix 
format as follows:

 
(18) 

Strain Machine

The Shockwave version of Strain Machine is provided 
as Figure 7. To fruitfully gain from the following material 
the reader should have either Figure 7 or the downloaded 
executable version of Strain Machine opened on their 
computer so they can perform the various procedures 
outlined in the remaining portions of this paper.

The first step in any strain experiment is to plot a circle 
by clicking on the Plot Circle button (Fig. 7). This step 
produces a circle with a radius of 4 units. Thirty six 
points along the circumference of the circle are shown as 
squares of different color. When the mouse pointer 
is moved over the strain grid, it changes from an arrow 
to a cross (Fig. 7).

The second step is to select to what kind of an 
experiment to conduct by clicking on either the simple or 
pure shear radio button (Fig. 7). In addition, the user must 
move the sliders to some preferred value of stretch (e + 1) 
and gamma (γ) (Fig. 7).

The third and final step of an experiment is to apply 
an increment of strain by clicking on the Show Strain 
button (Fig. 7). After each increment of applied strain, 
displacement paths for the 36 points are shown, and as 
a result, vector-displacement maps can be prepared 
easily from print outs of a given experiment. After each 
increment of strain, the user can determine the stretch 
value of a ray extending from the center of the original 
circle to any of the 36 points lying along the circumfer-
ence of the plotted ellipse by simply moving the mouse 
cursor over the point of interest (Fig. 7). The coordinates 
of the selected point of interest are displayed in two
 blue boxes on the left hand side of the programʼs 
window (Fig. 7). A useful exercise is to verify the 
stretch value through the use of the Pythagorean 
Theorem. At any time during the experiment, the user 
can change the values of (e + 1) or gamma (γ), and 
can switch from pure to simple shear or visa versa. 
Thus, complex strain paths can be modeled. 
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Figure 4. To distort the crinoid column by plane strain simple shear 
click on the Distort button.  R and R  ̓are two material lines that prior to 
progressive simple shear were perpendicular. Following distortion, the 
change in angle between R and R  ̓is 24º.(Select image for interactive 
HTML version)

Figure 5. A Flash 5 animation illustrating the key elements in the 
derivation of the transformation equation for two dimensional simple 
shear.  Select sequentially the items in the Show Geometrical Element 
drop-down list.  To see the equations for the geometrical elements 
identified in the resulting animation, select the item from the Show 
Equation For drop-down list. (Select image for interactive HTML 
version)

Figure 6. A Flash 5 animation  illustrating the key elements in the 
derivation of the transformation equation for two dimensional pure shear. 
Select sequentially the items in the Show Geometrical Elements drop-
down list.  To see the equations for the geometrical elements identified 
in the resulting animation, select the item from the Show Equation For 
drop-down list. (Select image for interactive HTML version)

http://www.virtualexplorer.com.au/2002R/Bobyarchick/Girty/figure4Girty.swf
http://www.virtualexplorer.com.au/2002R/Bobyarchick/Girty/figure5Girty.swf
http://www.virtualexplorer.com.au/2002R/Bobyarchick/Girty/figure6Girty.swf


Before conducting a new experiment the user must first 
clear the strain grid by clicking on the Clear button 
(Fig. 7).

Experimenting in Strain Machine

The Exercise

The following exercise was developed so that students 
can lean the key components of pure and simple shear 
through the act of discovery and experimentation.

The exercise consists of three parts. In part I students 
plot an initial circle and then calculate its area (i.e., 3.14 
* r2 where r = 4 units).  An increment of pure or simple 
shear is then applied to the plotted circle with γ set at 0.3 
and (e + 1) set at 1.10. Regardless of which type of strain 
is selected after application of one increment of strain 
the initial circle is transformed into the strain ellipse 
(Fig. 7) with major and minor axes equal to the principal 
strain axes X and Z. The intermediate strain axis, Y, lies 
perpendicular to the XZ plane (i.e., the computer screen).

In part II of the exercise, students perform both 
progressive simple and pure shear experiments applying 
seven increments of strain utilizing the same settings for 
(e + 1) and γ. Progressive strain refers to the non-rigid 
motion of a distorting body. During the experiment with 
Strain Machine it is assumed that the seven increments of 
strain are applied one after another without any significant 
time delay between each increment. Hence, motion is 
approximately steady.

Following application of seven increments of progressive 
strain students determine the area of the final strain ellipse. 
The area of an ellipse is πab, where a is the length of the 
semimajor axis and b is the length of the semiminor axis. 
All calculations are rounded to two significant figures.

Finally, print outs of the final plot are made and vector-
displacement maps of each experiment are prepared (Fig. 
8).

In part III, students utilize the data that they have 
gathered to address the following eight questions.

(1) What are the orientations of the principal strain axes 
X and Z after each increment of simple and pure shear?

(2) The incremental strain ellipse is characteristic of 
the strain transformation equation for a given (e+1) 
and γ. Finite strain refers to the total strain that has 
accumulated over a specified interval of time. How would 
you characterize the incremental strain ellipse and the 
finite strains that accumulated during your experiments of 
progressive simple and pure shear?

(3) If during an experiment the principal axes of a 
series of finite strains are parallel to the principal axes 
of incremental strain, then the experiment is an example 
of coaxial progressive strain. On the other hand if the 
principal axes of a series of finite strains are not parallel 
to the principal axes of incremental strain, then the 
experiment exemplifies non-coaxial progressive strain. 
Which of the two experiments (progressive simple or 
progressive pure shear) is an example of coaxial strain 
and which is an example of non-coaxial strain?
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Figure 7. Shockwave Version of Strain Machine. An executable version of Strain Machine with enhanced functionality (e.g., printing capabilities) is 
available at the authorʼs web site. (Interactive HTML Version: http://www.virtualexplorer.com.au/2002R/Bobyarchick/Girty/figure7Girty.dcr)

http://www.virtualexplorer.com.au/2002/9/Girty/paper1.html


(4) Is strain isochoric during progressive simple and 
pure shear?

(5) What do the vector-displacement maps tell you 
about the displacement paths of material points during 
progressive simple and pure shear?

(6) Material lines that have not undergone a net change 
in length are said to be lines of no finite longitudinal 
strain (i.e., stretch = 1.0) (e.g., Ragan, 1985). Hence, any 
ray with one end point at the center of the initial circle, 
and the other end point lying at the same location on the 
circumference of the initial circle and on the strain ellipse 
is a line of no finite longitudinal strain. For each increment 
of pure and simple shear how many material lines exhibit 
no finite longitudinal strain? What are the orientations of 
the X and Z principal strain axes relative to the lines of no 
finite longitudinal strain?

(7) The set of lines of no finite longitudinal strain 
subdivide the strain ellipse into four wedge or pie-shaped 
segments. During the experiments what happens to 
material lines that are contained within each of these four 
segments?

(8) What happens to the orientations of material lines 
that are parallel to the principal strain axes X and Z during 
progressive simple and pure shear?

The Results

From the above experiment students should be able to 
discover the following key components of strain.

(1)  For pure and simple shear applying the transformation 
equation to a set of coordinates defining a circle produces 
the strain ellipse (Figs. 8, 9, and 10).

(2) Both simple and pure shear are two end members of 
plane strain, and are therefore constant area (or volume) 

distortions that can be described mathematically by a 
transformation equation. Under such conditions πr2 = 
πab.

(3) Progressive simple and pure shear are a series of 
strain events, each event being an addition to a growing 
distortion. Such a process can be modeled for n steps, 
by first applying the transformation equation to the 
coordinates of a circle to produce the incremental strain 
ellipse (Figs. 9, 10). The incremental strain ellipse 
is representative of the applied strain transformation 
equation with (e+1) = 1.10 and γ = 0.3. Applying the 
same transformation equation to the coordinates of the 
first through nth ellipses produces the second through nth 
steps (Figs. 9, 10). Thus, after completion of the first step 
what is displayed in Strain Machine is the finite and not 
the incremental strain. Though incremental strain was kept 
constant during the above experiment, it is important to 
realize that this does not need to be the case.

(4) Tracking the orientations of the principal strain axes 
during progressive simple and pure shear reveals that 
simple shear is non-coaxial while pure shear is coaxial 
(Figs. 9, 10).

(5) Vector-displacement maps for pure shear reveal 
that during progressive strain, all particles, with the 
exception of those oriented parallel to the principal strain 
axes, follow complex curved paths (Fig. 8A). In contrast, 
particles located along the principal strain axis X follow 
a linear path moving outward away from the origin while 
those located along Z follow a linear path moving inward 
toward the origin.

(6) During pure shear material lines that are oriented 
parallel to the Z principal strain axis are shortened, while 
those oriented parallel to the X principal strain axis are 
lengthened (i.e., extended) (Fig. 9). In contrast, some 
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Figure 8. Vector-displacement maps based on 7 strain increments with 
(e+1) = 1.1 and g = 0.3. (A) Pure shear. (B) Simple shear. Click on the 
Show Initial Circle and Strain Ellipse button to gain access to animations 
of particle displacement paths.  Note the different paths that particles 
travel as they are displaced from their positions on the circumference 
of the circle to their positions on the strain ellipse. (Select image for 
interactive HTML version)

Figure 9.  To observe the positions of lines of no finite longitudinal 
strain during seven increments of pure shear slide the silver ring to the 
right or click on the Play Movie button. Note that during the experiment 
that the X and Z principal strain axes lengthened and shortened, but oth-
erwise remained stationary. Any material line whose orientation lies with 
the pie-shaped segment bisected by Z has been shortened while those 
with orientations lying within the pie-shaped segment bisected by X 
have been lengthened. (Select image for interactive HTML version)

http://www.virtualexplorer.com.au/2002R/Bobyarchick/Girty/figure8Girty.swf
http://www.virtualexplorer.com.au/2002R/Bobyarchick/Girty/figure9Girty.swf


material lines not oriented parallel to the principal strain 
axes undergo complex distortions, sometimes shortening 
early in the strain history and then lengthening later on.

(7) Vector-displacement maps for progressive 
simple shear reveal that the 36 particles lying on the 
circumference of the initial circle follow simple linear 
paths that are parallel to the x-coordinate axis, i.e., the 
plane of shear (Fig. 8B).

(8) During progressive simple shear material lines that 
are not parallel to the x-coordinate axis, rotate toward it. 
Depending upon their initial orientation some material 
lines will initially shorten and then pass through an 
orientation where their stretch values are 1.0. Subsequent 
increments of strain will result in these lines elongating. 
The lengths of material lines that are oriented parallel to 
the x-coordinate axis do not change during progressive 
simple shear (Figs. 8B, 10). In contrast, material lines 
parallel to the principal strain axes X and Z lengthen 
and shorten respectively while rotating toward the x-
coordinate axis (Fig. 10).

(9) Following any increment of pure or simple shear two 
lines of no finite longitudinal strain can be identified (Figs. 
9, 10). These lines divide the strain ellipse into four wedge 
or pie-shaped segments. The principal strain axes X and Z 
bisect the two lines of no finite longitudinal strain (Figs. 9, 
10). Material lines lying in those segments bisected by the 
Z principal axes have been shortened while those lying in 
segments bisected by X have lengthened.

Conclusions

Strain Machine and other interactive illustrations used in 
this paper were designed with the undergraduate student or 
professional newly introduced to the concept of strain in 
mind. Hopefully they will aid such individuals in learning 
the basics of strain theory. I encourage my colleagues to 
give Strain Machine and the interactive Flash 5 animations 
a try. From my experience students will like “playing” and 
“experimenting” with them and in so doing will be gaining 
intuition about this core concept of structural geology.
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Figure 10. To observe the positions of lines of no finite longitudinal 
strain during  seven increments of simple shear slide the silver ring to the 
right or click on the Play Movie button. Note that the X and Z principal 
strain axes have rotated toward the direction of shear while one line of 
no finite longitudinal strain lies unchanged and parallel to the x-coordi-
nate axis, i.e., the direction of shear. As with figure 9 any material line 
whose orientation lies with the pie-shaped segment bisected by Z has 
been shortened while those with orientations lying within the pie-shaped 
segment bisected by X have been lengthened. 

http://www.virtualexplorer.com.au/2002R/Bobyarchick/Girty/figure10Girty.swf



