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Introduction

For more than a century, geologists have used theoretical
and practical analysis of stress, strain, and flow to help in
the understanding of tectonic structures (e.g., Means 1976,
1990). Among the graphical tools currently available are the
Mohr constructions for stress, infinitesimal strain and
reciprocal quadratic elongation. Modifications to these
constructions for two-dimensional stretch and flow have
made them more broadly applicable to general
deformations and more powerful (Passchier and Urai 1988,
Bons and Urai 1992) but this also has added to their
complexity (De Paor and Means 1984). Whilst Mohr
constructions greatly aid in the visualization of deformation
and the discovery of numerical solutions to structural
problems, the burden of learning the mathematical
derivations, even of the simpler classical constructions may
turn students off structural studies at an early stage. Many
geochemists and paleontologists admit that they chose their
career paths to avoid things like Mohr Diagrams! 

New Construction

This paper presents a new approach which builds on the
geologist's existing familiarity with stereographic
projection (e.g., Davis and Reynolds 1996, p. 691) and
avoids some of the complexity associated with previous
methods. The construction, which the author's students have
dubbed "Declan's Doughnut," for reasons that will become
apparent, improves on both classical Mohr constructions
and modern variants in that a vector is presented in its
correct spatial orientation; in contrast, other plots relate
stress or strain magnitudes to spatial orientations via
complex constructions.

System Requirements

To view the animations in the electronic version of this
paper, you will need a Java-enabled, version 4 or higher
web browser. You also must have version 5, or higher, of
Macromedia's Shockwave Flash™ plugin which is
available for Windows, Mac, Linux and Solaris. The vast
majority of web browsers have Flash installed (Macromedia
claim a market penetration in excess of 90%) but most
utilize version 4 which permits viewing but not full
interactivity. 

To download and install Flash version 5, go to
http://www.macromedia.com/shockwave/download. If the
animations are still not working after installation, check
your browser's settings to ensure that the plugin is indeed in
the current browser's plugin folder, and that it is designated
as the "helper application" for files with the suffix ".swf"
and the MIME type "application/x-shockwave-flash." 

The Underlying Grid

The new constructions employ a polar grid of the type
used for the plotting of linear rose diagrams or scatter
graphs of vector data (Fig. 1). The difference between this
grid and a polar stereonet such as the Lambert Projection
lies in the constant spacing of the concentric circles and the
arbitrary outer limit here chosen as 10 bold units.

To facilitate scaling operations, a net of 10 cm radius with
concentric circles drawn bold every 1 cm and light every 2
mm is used here. (The actual units are not specified - they
could be Megapascals, or pounds per square inch for stress
analysis, pure numbers in the case of strain, or rates in the
case of flow). Angles are marked lightly at 2-degree
intervals and heavily every 10-degrees, over all but the
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innermost part of the grid. The source is a standard .gif file
call DonutPaper.gif. You may download a zipped (PC) or
stuffed (Mac) version for printing and reproduction.
Alternatively, just drag Fig. 1 from your browser window to
the computer desktop.

The Simplest Stress Construction: Uniaxial Stress:
Animated Version

To begin, let us consider the simple problem of
determining the total stress σt on an arbitrary inclined plane
under a uniaxial principal stress, say σ1 = 200 MPa (the
subscript t is used because σt refers to the total load on a
plane per unit area and generally has both normal and shear
stress components, σn and σs). The problem is solved by an
interactive Flash animation, a snapshot of which is
illustrated in Fig. 2. A circle is drawn with a diameter
representing 200 MPa. A bold red line represents a vertical
stress vector. Solid and hashed green lines of arbitrary
length represent, respectively, the normal and trace of the
plane on which that stress acts. If you drag the computer
mouse around the circle, the inclined plane tracks the mouse
movement and the red  line represents the total stress, σt, as
a function of pole orientation, θn. Toggling the show/hide
button reveals the normal and shear stress components
which are drawn in magenta. Note that the orientation of the
stress vector in this case remains constant; only the stress
magnitude changes with orientation of the plane of
application. For simplicity, the maximum stress is chosen
vertical in the case illustrated; other orientations are simply
entered into the θ0 text field. 

The Hand-drawn Construction for Uniaxial Stress

To create an equivalent construction using pencil and
tracing paper, print Fig. 1 onto plain paper or acquire a polar
grid and ruler, and then follow these steps:

(i) Mark a point Op on the perimeter of the grid at zero
degrees which we will call the "Origin of Planes." 

(ii) Mark a second point Os, also on the grid, at 180 degrees,
which we will call the "Origin of Stresses." 

(iii)Place a tracing overlay on the grid and draw an arbitrary
radius to represent the normal to a plane of interest and
a hashed tangent to represent the trace of the plane. The
lengths of these radial and tangential lines have no
numerical significance; they just mark directions. At the
outset, the tracing overlay should be oriented so that
these two lines intersect at the origin of planes, Op. 

(iv) Let the diameter of the net represent the principal stress
σ1 = 200 MPa. So, for example, if the net's diameter is
20 cm as in Fig. 1, then every bold (centimeter) division
corresponds to 10 MPa and every smaller (2mm)
division represents 2 MPa.

(v) To determine the stress σt on a plane whose normal
subtends an angle θn clockwise from vertical, rotate the
tracing overlay clockwise through the angle θn from the
origin of planes, Op, then count an angle -θn
counterclockwise from the origin of stresses, Os (this
mark is on the grid, not the overlay, so it does not
rotate), and join the resultant points. 

Step (v) is a rather roundabout way of drawing a vertical
line! However, it introduces the general procedure that must
be followed in the more complicated cases that follow.

The line thus drawn represents the stress vector σt in
magnitude and orientation. Its shear and normal stress
components, σs and σn, may be found by casting
perpendiculars onto the trace of the plane and its normal,
and measuring the components with a ruler scaled to 1 MPa
per millimeter in this case. Obviously, these stress
components are also shown in their correct spatial
orientation.

Generalization to cases of non-vertical principal stress is
trivial; you simply rotate the two origins, Op and Os, and
the tracing overlay, to the desired inclination. Using the

Figure 2. Animation for solving uniaxial stress problems.Figure 1: The Polar Grid.

http://www.scienceprof.com/VE_MS/DonutPaper.gif
http://www.scienceprof.com/VE_MS/Donut1a.swf
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Flash animation, you enter a value for θ0 and click the set
button. Unlike the classical Mohr construction, there is no
complicated procedure for relating data in geographic space
to data in stress space.

Slip on Preexisting Failure Plane

The uniaxial stress construction is immediately ready for
practical application. Let the angle of sliding friction for
slip on a preexisting fracture or fault plane be ψ = 20
degrees (correspondingly, the coefficient of sliding friction
is µ = tanψ ). We can shade an area analogous to a pre-
fractured Mohr-Coulomb envelope, shown in green in Fig.
3. In the hand-construction, this shading is applied on the
overlay so that it rotates with the plane's trace and normal.
Using the Flash animation linked to Fig. 3,  enter the desired
angle of friction in the ψ text field and press the set button.
Then either drag the mouse to change the plane's orientation
or enter its dip in the θn text field and click the set button.
As long as the red stress vector lies in the green stable field,
a block resting on the plane is stable. As soon as the dip
angle exceeds the angle of friction, the block slips. [Astute
students may question why the block does not accelerate.
This is mainly due to author's laziness but also reflects the
block's terminal velocity under frictional sliding. The block
does slide faster at steeper dips but does not fall off after 90
degrees; no useful purpose, beyond entertainment, would be
served by such an animation enhancement.] 

By reducing the value of the principal stress in the σ1 text
field, you can powerfully convey the fact that, in this
cohesionless scenario, sliding can occur no matter how
small the shear stress magnitude, provided the shear to
normal stress ratio exceed the coefficient of friction, µ.

The Construction for Two Stresses of Like Sign

A more general case is represented in Fig. 4, where two
principal stresses, σ1 (vertical) and σ2 (horizontal), are
either both compressive or both tensile. In this case, two
circles are drawn, one with diameter σ1+σ2 and the other
with diameter σ1-σ2. The area between these circles is
called the "doughnut" (a.k.a. "donut!") 

[In the hand-drawn implementation, any suitable scale
factor may be used to convert radii from centimeters to
Megapascals and vice versa. It is not necessary to use the
full diameter of the grid if that results in tedious scale
conversions. For example, if σ1 = 120 MPa and σ2 = 60
MPa then (σ1+σ2) = 180 MPa, so a scale of 10 MPa = 1 cm
is appropriate, giving an outer circle of 18 cm diameter
that easily fits within the 20 cm diameter grid of Fig. 1. To
this scale, the inner circle is (σ1-σ2) = 60 MPa = 6 cm. ]

The origin of planes, Op, is marked on the underlying
grid at an arbitrary point on the outer edge of the doughnut
and the origin of stresses, Os, is marked also on the
underlying grid at the diametrically opposite point on the
inner edge of the doughnut (Fig. 4). The distance Op - Os
is thus equal to σ1 and the radial width of the doughnut
from inner to outer edge is σ2 .

To determine the stress acting on an arbitrary plane, you
follow a similar procedure to the uniaxial case:
(i) Rotate the tracing overlay with its plane trace and

normal axes through the arbitrary angle, say θn = 26°,
from the origin of planes, Op.

(ii) Mark off -θn = -26° from the origin of stresses Os
around the inner circle, and connect these points to
obtain the total stress, Oτ.

This time, the construction is not an unnecessarily
obscure way of drawing a vertical line; rather, the stress
vector is oblique to the vertical and horizontal for all but
the principal values. As before, all stress vectors and
planes on which they act are shown in their correct spatial
orientations. 

There is some danger of accidentally counting off a 26°
angle rather than -26° on the inside of the doughnut.
However, this error is easily spotted; the result is always a
vector with the magnitude of the principal stress, |σ1|.
Most students will quickly realize that they are doing
something wrong! In contrast, confusion of sign
conventions in Mohr constructions are rampant and
difficult to spot, especially since angles measured on Mohr
circles are also doubled. The animation in Fig. 4 also
includes an option to show the stress ellipse centered on
the outer margin of the doughnut. By dragging the
mouse around, you quickly get to appreciate the fact that
the ellipse represents the locus of all total stress vectors.

General Failure Envelope

To illustrate the general Mohr-Coulomb type failure
criteria on the new constructions, an area is shaded green
as in Fig. 5; however, the shaded outline is now parabolic,
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Figure 3. Flash animation of the failure criterion for slip on a preexisting
plane.

http://www.scienceprof.com/VE_MS/Donut1b.swf
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representing the transition from brittle to ductile
deformation mechanisms with depth in the earth's crust,
and it extends past the trace of the plane, representing
material with a certain tensile strength due to its
cohesiveness (Fig. 5a). 

Whereas the influence of pore fluid pressure is usually
represented by drawing different Mohr circles for stress
and effective stress, it makes more sense, following Bayly
(1991) to shift the Mohr envelope instead. This is
implemented in the animation linked to Fig. 5. When pore
pressure is applied, the shaded area shifts away from the
plane's trace, reducing the extend of the stable region. As
the mouse is dragged around the doughnut, there are some
directions in which the stress vector falls outside the
shaded stable envelope. Pore fluid pressure is applied in
the animation linked to Fig. 5 by clicking the lower right
button.

The Construction for Two Stresses of Opposite
Sign

When the principal stresses differ in sign (one being
compressive, the other tensile), their sum is numerically
less than their difference. In this case, therefore, the origin
of planes, Op, lies on the inner boundary of the doughnut
and the origin of stresses, Os, lies on the outside (Fig. 6). If
you apply the same rules of construction as before, counting
degrees clockwise from Op and counterclockwise from Os,
or vice versa, the construction yields valid results. Now
there are two special conjugate orientations in which the
normal component of stress drops to zero; in these
orientations, the total stress vector is parallel to the trace of
the plane and is equal to the shear stress component. These
cases correspond to the points where the Mohr circle
intersects the shear stress axis of a conventional Mohr

Diagram and they divide the stress ellipse into fields of
compression and tension, as color-coded in the animation.

Limitations

The constructions presented thus far are ideal for
determining the stress state given fixed values of the
principal stresses. However, there are many situations in
which it is desirable to examine variations in the stress
tensor with time and for these, the classical Mohr
construction is still superior; therefore, it is important to be
able to transfer from one construction to the other.

The relationship between the doughnut construction and
the Mohr Diagram could not be simpler to illustrate, since
the inner circle of the doughnut is a rotated version of the
Mohr circle; all you need do is lift the tracing overlay off
the grid and reorient it with the plane's normal and trace
oriented as abscissa and ordinate (Refer back to Fig. 4).
Note the relationship between the Mohr circle's poles and
the two origins of the doughnut diagram, Op and Os. 

The role of the traditional Mohr Diagram can be
enhanced with the aid of animation, as illustrated in the
Flash movies linked to the caption of Fig. 7. This is
particularly true at sub-critical stress states early in a
deformation history, which are difficult to illustrate with
overlapping series of circles, and at elevated confining
pressures, where rapid ductile strain rates lead to a
dissipation of the applied stress difference. In Fig. 7a, a
specimen (blue) is subjected to increased confining pressure
in stage (1), represented on the Mohr diagram by a point
(circle of zero radius) that moves across the normal stress
axis. In stage (2), an axial load is applied via the red and
black pistons, creating a differential stress represented by
the radius of the growing Mohr circle. In stage (3), the
specimen fails along a fracture plane (dash yellow line)
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Figure 5. Parabolic failure envelopes for a) total and b) effective stress.Figure 4. Construction for stresses of like sign. See text for explanation.

a) b)

http://www.scienceprof.com/VE_MS/Donut2a.swf
http://www.scienceprof.com/VE_MS/Donut2b.swf
http://www.scienceprof.com/VE_MS/Donut2b.swf
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determined by the point of tangency of the Mohr circle and
envelope. The magnitudes of the nomal and shear stresses at
the moment of failure are indicated by the red dot in stress
space. Whether the plane show here or its conjugate
(reflected through the vertical) becomes the site of
specimen failure is a matter of chance. 

Figure 7b shows an similar experiment in which the
specimen yields just before failing, whereas in Fig. 7c, the
period of ductile flow after yielding is protracted. The
differential stress that the specimen can maintain (which
equals the diameter of the Mohr circle) is a function of
strain rate, since strain dissipates the applied load by
continuous flow on ductile shear zones (dashed yellow
lines). T h e orientations of the ductile shear zones on which
the specimen deforms and the stresses on the those shear
planes (yellow spots) are determined by "Bayly Curves"
(1991 - dashed) that contour strain rate, as indicated by the
"strain rate -->" label. These curves are a function of the
material and may be straighter, or even concave.

The Strain Construction

The construction for strain is similar to that for stress
except that the origins are renamed "origin of lines", OL,
and "origin of strains", Os, respectively, and the
deformation generally includes a component of rigid
rotation. Figure 8 shows a screen shot from an animation of
the case of simple shear.

To construct a diagram for simple shear by hand:
(i) draw an inner circle with diameter γ equal to the shear

strain,
(ii) draw a tangent of unit length in the direction of slip and

label its ends OL and Os, as in Fig. 8,
(iii) draw an outer circle passing through the tangent, OL.

Now you are ready to determine the stretch and rotation
of an arbitrary line, say one at -32° (counterclockwise) from

the origin of lines, OL. Analogous to the case of stress,
rotate the tracing overlay through an angle of -32° and set
off an angle +32° clockwise from the origin of strains, Os,
yielding the red line of Fig. 8. This has the deformed length
and orientation of the initial orange line. For reference,
equivalent off-axis Mohr circle constructions are inset in the
animation.

The Flow Construction

Whilst the final state of deformation of a rock is of
potentially great interest, kinematic analysis is essential for
a full understanding of structural evolution. Fabrics in
mylonites are particularly strongly controlled by the
kinematic character of the flow regime. An animated flow
construction for progressive pure shearing is linked to Fig.
9. This is equivalent to an extreme case of the construction
for stresses of unlike sign (Fig. 6) in which the circle
representing the sum of the principal vectors shrinks to
zero, because they are equal but opposite, and the flow is
represented by a circular ellipse with axes of opposite sign
(Fig. 10). Nevertheless, the construction rules are
unchanged. To determine the flow vector for a particular
direction, the tracing overlay is rotated through the desired
angle about the circle on which the origin of directions, Od,
resides (i.e. the one that has shrunk to a point) and an equal
but opposite angle is set off from the origin of flow, Of. The
origins are renamed so that it is immediately clear from the
labels which is a construction for stress, strain, and flow.

Conclusion

All tensor phenomena in nature can be represented in a
variety of ways. A purely algebraic representation using
matrices suffices in theory but, for most people, visual
queues aid in the discovery of solutions to problems. The
stress, strain, and flow ellipses (/ellipsoids) are useful for
illustration and visualization purposes but they are difficult
to plot and measure in quantitative studies. Graphs combine
the qualities of visualization and measurement but their
effectiveness is reduced when the relationship between the
space of plotted values and geographic space becomes
obscure, as is certainly the case for the classical Mohr
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Figure 6. Construction for stresses of unlike sign. The green shaded sectors
of the stress ellipse represent the field of tension this case.

Figure 7. Animation of Mohr Envelope Constructions for (a) brittle
deformation, (b) yielding failure, and (c) ductile shear.

http://www.scienceprof.com/VE_MS/Donut2c.swf
http://www.scienceprof.com/VE_MS/DefRig_2.swf
http://www.scienceprof.com/VE_MS/DefRig_2.swf
http://www.scienceprof.com/VE_MS/DefRig_3.swf
http://www.scienceprof.com/VE_MS/DefRig_4.swf
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construction. The new doughnut construction presents the
same data in a more easily visualized format. The plot has
the major advantage that it displays vector data in their
correct spatial orientations. And there is an added advantage
that it builds on the orientation net skills that all students of
structural geology acquire at an early stage. It obviates the
need for complex constructions involving Mohr circle poles
and off-axis circles. 

The method is implemented in the on-line version of this
paper using computer animation but the construction is also
suitable for traditional pencil-and-tracing-paper
applications in the teaching laboratory. Indeed, it is
important for students to practice all such methods by hand;
the role of animation is to aid visualization and rapid
acquisition of a basic understand, and also to provide
convenience and accuracy after the hand method has been
mastered. The author's recent teaching experience (ES71 -
Tectonics and Structural Geology - at Harvard University,
and ES301 - Structural Analysis - at Boston University)
suggests that the new approach saves at least one hour of
lecture time and four hours of lab. Seemingly trivial details,
such as the fact that, in the stress construction, compression
is plotted downwards, dextral shear to the right, and sinistral
shear to the left, can add up to a significant saving in
comprehension time and effort.

Of course, there are cases where both the classical and
modern Mohr constructions are desirable, in which cases
the polar plots are converted to the Mohr reference frame
simply by lifting the tracing overlay off the polar net and
orienting it horizontally.
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Figure 8. Construction for simple shear strain.

Figure 9. The construction for flow (a.k.a. velocity gradients).

Figure 10. Flow ellipse for progressive pure shearing. The red shaded area
represents flow vectors with a component of shortening. The black tick
marks the direction to which the red flow vector applies.
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