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Abstract: Stiff resistant inclusions in a deforming rock generate local stress concentra-
tions and stress gradients. The resulting diffusive mass transfer is partly along grain
interfaces and partly through grain interiors. For the latter effect, two different sets of
fundamental ideas are in use. In either version, the effect of diffusion is to enhance strain
rates and to moderate stress concentrations. In the first version, local diffusive loss is
isotropic and can change an infinitesimal spherical element only to a smaller sphere
whereas in the second, local diffusive loss can be anisotropic and can change a sphere
to an ellipsoid.

The problem used as illustration is that of a highly viscous embedded cylinder in pure
shear. Each version yields predictions of diminished stress concentrations and enhanced
strain rates, and invites further development. The second version is favored; by exten-
sion, a material component’s chemical potential at a point is seen as being like the normal
stress at a point, i.e. multivalued, every planar element through the point having its own
associated value.

Note that this special volume is also preserved in its original format.

To see this paper copy the link below into your browser
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Editor's Note
This special volume is also preserved in its original for-

mat.
To see this paper in that format copy the link below into

your browser
http://virtualexplorer.com.au/webroot/special/mean-

svolume/contribs/bayly/index.html
or click on the link provided  here.

Introduction
Among the purposes of the present volume is that of

recognizing Win Means's contributions to our science, and
among his contributions is his emphasis on the "global
classroom." The perpetual student, the teacher who is also
an eager learner, has been with us since classical times;
nowadays, with electronic help, geologists can converse
regardless of distance; the classroom in which we learn
from each other is global indeed. I think Win would agree
that it is more a seminar room than a lecture hall: avoiding
the dogmatic, a proper use of global facilities is to put for-
ward exploratory ideas so as to prompt colleagues to work
them over.

These prefatory remarks are supposed to excuse the fact
that the following proposals are only incomplete and ten-
tative. I would like to have been able to link all the threads
and reach conclusions that were incontrovertible, but have
not been able. Readers will please exercise their own in-
sight, and honor Win by treating the classroom as one
where progress is cooperative. I hope others will continue
to pursue the threads here taken in hand.

Stresses as a topic of study by themselves are of only
limited interest, and the same is true of strains; it is in the
interplay, when a stress causes a strain, that the topics come
alive.

The link between stresses and strains is the material's
rheology. To get started in the simplest manner, one can
imagine a Newtonian material, one whose viscosity re-
mains the same no matter what stress magnitude develops.
But the outcrop geologist is soon forced to note a defect of
Newtonian models: they make no allowance for diffusive
mass transfer, whereas outcrops are full of evidence of such
effects; differentiated cleavage zones and the gap-fillings
between boudins are just two from a long list of manifes-
tations.

Diffusion effects were incorporated in abstract general
formulations of mechanics in the 1960s, but the first results

for specified realistic geometries were produced by Green
(1970, 1980) and by Fletcher (1982). Fletcher described
diffusion in three situations:

(i) across a homogeneous bar when bent;
(ii) along an inhomogeneous bar when compressed

across its width;
(iii) in an almost-planar layer at the onset of folding.
The second situation was explored further by van der

Molen (1985) and examined independently by Stephenson
(1988). Except for Fletcher's problem (iii), all of these can
be called "one-dimensional" examples: the materials are
taken to fill space in three dimensions, but it is in only one
direction that a gradient exists driving a diffusive flux.
Computer-chip design has prompted more one-dimension-
al studies (e.g. Greer 1995; Daruka et al. 1996) but in the
present work we seek an example to extend Fletcher's ex-
ploration in two and three dimensions.

Definitions: in subsequent paragraphs the following
two effects are considered to be separate. Let a large sample
be imagined as divided into many small elements; each el-
ement is defined by the atoms that sit in its boundary, as if
one could, for example, paint them. In "deformation with-
out diffusive mass transfer" or "deformation at constant
volume," the elements all change their shape but no atom
migrates out of one element across a boundary into another
element; the material contents of each element do not
change. By contrast, "diffusive mass transfer" here means
the migration of a few atoms through the main mass of non-
migrators, and includes the migration of a few atoms across
boundaries. Time is considered divisible into small inter-
vals, so that in any interval only a small fraction of the total
atom population migrates or diffuses; the vast majority re-
main in a coherent mass, so that the element boundaries
remain well defined, though in need of constant touching
up. But averaged over time, all atoms behave alike; every
atom spends most of its time being coherent with its neigh-
bors and has only brief spasms of action as a diffuser. In
subsequent paragraphs, "viscous deformation" and "creep"
refer to the first process, to deformation with no change of
element contents, and "diffusion" is used for only the sec-
ond process, in place of the more cumbersome "diffusive
mass transfer."

In other contexts, of course, one might distinguish creep
that occurs "by diffusion" from creep that occurs for ex-
ample by glide on glide-planes, while both are envisaged
as processes at constant volume. It is for the present paper
only that "diffusion" is used in the special sense noted.
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A simple assembly with two-dimensional cross-section
is shown in Figure 1. A cylindrical inclusion with high vis-
cosity is embedded in an extensive matrix of less viscous
material; at all points remote from the inclusion, the stress
field is uniform --- a north-south compression M+S and a
smaller east-west compression M-S; the situation extends
uniformly perpendicular to the plane of the diagram so that,
for all particles in the plane of the diagram, their velocities
lie in the plane of the diagram too. Regions of greater com-
pression exist around X,X and regions of less compression
exist around Y,Y; if diffusive fluxes exist at all, they will
carry material away from X and toward Y. In the simplest
formulation, we assume that each of the materials, --- (i)
the inclusion and (ii) the matrix, --- has a constant isotropic
viscosity, a constant coefficient of self-diffusion and con-
stant density. For materials that show no self-diffusion at
all, equations were developed over a century ago that ac-
curately describe the resulting instantaneous strain rates
and velocity field, but for materials with self-diffusion, the
behavior is still not properly known.

As far as I know, the most extensive study of this prob-
lem yet made is the one by Finley (1994, 1996). Kenkmann
and Dresen (1998) cover many aspects but exclude diffu-
sion. Ideally, one might specify material properties and
then try to discover the stress field that would exist around
the inclusion without any preconceptions. However, a
powerful exploratory approach is to make some assump-
tions about the stress field and ask, "What material prop-
erties would allow a stress field of this particular form to
exist?" Using this approach, Finley shows a suite of pos-
sible stress fields for different degrees of contrast between
inclusion and matrix, but all depend on the material being
anisotropic; not only anisotropic but anisotropic to just the
right extent and with the right variation from point to point
to allow the stress field to be of the form assumed. The
results constitute a valuable first attack on the problem and
are highly instructive, but they prompt the thought, "Let us
approach this problem again with particular attention to the
matter of isotropy. If we insist on the materials being iso-
tropic or close to it, in what way does this guide us as re-
gards possible stress fields? Can we progress on and de-
scribe stress states that could exist in materials with less
pronounced anisotropy? (N.B. Fletcher, in this volume,
considers the same geometry but treats only transport at the
interface whereas Finley's work and the present paper treat
transport through the body of the materials.)

Preview of conclusions
Regrettably, I think this problem has no elegant solu-

tion; stress fields such as Finley described, using a small
number of intelligible terms, are perhaps not found in ide-
ally isotropic materials; even this problem, selected to be
the simplest possible that admits diffusion in two dimen-
sions, perhaps suffers from intractable awkwardness. How-
ever, the second approach, emphasizing the material’s iso-
tropy, brings some points of interest to the fore. I will
therefore run through them, and hope that someone using
Finley’s insights as well as the present points succeeds in
making a fruitful attack on this resistant problem.

Aside from the matter of isotropy, two more features of
the present work are:

(1) attention to the condition of plane strain, which is
less simple in presence of diffusion than in its absence, and

(2) attention to the possibility that when stress drives
diffusion, the loss or gain in a material element may not be
by the same amount in all directions: diffusive loss may
turn a spherical element into a smaller ellipsoid, not nec-
essarily a smaller sphere.

In fact, part of the purpose of the present piece is to bring
the second idea forward and to explore it.

The classical solution extended
An intuitive picture of the stress state close to a stiff

inclusion is shown by the shading in Figure 1. The quantity
indicated is the mean stress, with two high-compression
regions outside the inclusion to north and south and two
regions of lower compression, "stress shadows," to east and
west. The variation in mean stress is shown more quanti-
tatively in Figure 2A; if, as shown in Figure 1, the remote
stress field has principal stresses M+S and M-S, then
against a rigid inclusion in absence of diffusion, the ex-
treme values of the local mean stress are M+2S at the north
and south interface points, and M-2S at the east and west
points (Muskhelishvili 1963; Jaeger and Cook 1979). The
values diminish outwards in proportion with the square of
the radius, so that at r = 2R, the anomalies are only one-
quarter of their maximum values, and so on (r = radial co-
ordinate; R = radius of the inclusion, hereafter taken as the
unit length).
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Figure 1. Cross-section of a long stiff cylindrical
inclusion in a less stiff matrix.

The matrix is assumed to extend without limit, and the
uniform stresses shown are actually applied at a great
distance from the inclusion. The shading shows loca-
tions of maximum and minimum compression.

Algebraic details are given in Appendix 1, but already
an important point about the mean-stress surface can be
noted. If diffusion were to start up but was sufficiently
slight that the stress field was hardly modified, the gradi-
ents in Figure 2A could be thought of as the driving agents.
Focussing, for example, on the east valley, we should ex-
pect diffusion into the valley from either side and also from
its shallow upper end (the foreground of Figure 2A). But
the valley-bottom descends more steeply close to the in-
clusion, and the variation specifically with radius to the
power of two has the following property: if the diffusive
flux is proportional to the mean-stress gradient, then over
any section of the valley floor, the material diffusing out
from the lower end exceeds what diffuses in at the top end
by just enough to exactly balance the inflow at the sides;
see Figure 2B (i) and (ii). The profile across the valley is
concave upward but the profile along the valley is concave
downward; if we write for the mean stress and use local
axes x and y as in Figure 2B (iii), then

Figure 2. A surface representing the mean-stress
magnitude

Shown here in the neighborhood of the inclusion; loca-
tions X,X and Y,Y are as in Figure 1. Far from the inclu-
sion, the surface is flat at magnitude M. Part B of the
figure shows details of the east valley.

The fact that this particular balance exists means that
diffusion could indeed run without affecting the stress
field. As so far described, the diffusion process would have
no effect on the material’s shape at any point. If we could
just take care of effects at the interface, by finding a home
for material that runs to the interface down the east and west
valleys and supplying material so that it can run away from
the interface at the north and south humps, we should have
a system capable of running in a steady state.

To pursue this possibility, imagine that the cylindrical
inclusion is stiff but not totally rigid. The pattern of mean
stress would be changed only slightly, but the velocity field
would change in an important respect: the cylinder’s boun-
dary would no longer be stationary but would become a
changing ellipse in cross-section; if the cross-section were
a circle at one moment, at later times it would become
shorter north-south and longer east-west. An illustration of
such a change is given in Figure 3.
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Figure 3. Deformation of a grid that is initially
composed of uniform squares.

Part A shows how such a grid would change if the in-
clusion were rigid and the matrix was deformed. Part B
shows how the grid would deform if the remote sur-
roundings stayed still but the inclusion changed shape.
We can assume that the inclusion is rigid, as in A; but in
the surroundings, suppose that the change shown in B
is superimposed on the change shown in A: then a gap
would develop to east and west of the inclusion, and a
conflict would exist to north and south, with inclusion and
matrix both imagined to occupy the same space. Diffu-
sive mass transfer could obviate the gap and the conflict.

The point now to be made is: if this velocity field were
to exist in the inclusion’s surroundings when the inclusion
was in fact totally rigid, there would be a mass conflict at
the north and south interface points (excess material to be
got rid of) and a mass deficit at the east and west points
(material would be needed to fill the gap). These are exactly
the conditions that diffusion could take care of. In other
words, if diffusion were to occur, the matrix could move
as if the inclusion were deformable when in fact it was not;

or more generally, if the inclusion were slightly deforma-
ble, the matrix could move as if it were more readily de-
formable because of the easing effect of the diffusive flux-
es.

The preceding ideas are quantified in Appendix 1, and
illustrated in Figure 4. If stiff viscous materials were im-
portant in everyday engineering, the equations in Appendix
1 would have been worked out long ago; the reason that
they or some equivalents have not been worked out before
is partly that elastic behavior has commanded more atten-
tion, and partly that diffusion effects in everyday engineer-
ing occur on very short length scales. A conclusion from
Appendix 1 is that for diffusion effects to be of conse-
quence, the radius of a rigid inclusion needs to be only a
few multiples of the material’s characteristic length. (For
comment on the idea of characteristic length, see Appendix
2). This means that in metal alloys we would need to be
looking at resistant particles measured in nanometers, and
in dry, hot creeping mineral aggregates we would need in-
clusions measured in micrometers (Bayly 1992, p. 120).
By contrast, the purpose here is to contribute to the study
of outcrops: we seek relations between stresses and strain
rates that allow for diffusive mass transfer so as to under-
stand augen, stylolites, saddle reefs etc., with dimensions
in centimeters or meters. Fletcher (1982) has addressed this
point and suggested that for a rock that self-diffuses by
movement of dissolved quartz, the characteristic length
might be of the order of 10 cm; but of course there remains
considerable doubt about what behaviors in a wet granular
rock resemble behaviors in an idealized continuum.
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Figure 4. The intensity of the diffusive fluxes.

The tangential flux is greater close to the inclusion than
farther out and is at a maximum across a plane at 45°,
diminishing to zero on planes running due east or north.
The radial flux similarly is strongest at the interface, but
is zero at 45° and at a maximum along an east line (flux
inward) or a north line (flux outward).

Defects in the description so far
The description so far is defective in that:
(1) it describes only effects driven by the mean-stress

magnitudes and gradients, --- no attention has yet been paid
to σr and σq separately.

(2) it does not show any volume-element of material
shrinking or expanding, --- losing or gaining material, ---
by the diffusive mass transfer. The material that diffuses is
deposited all in one location, at the interface, separate from
the material it has diffused through. I would like to make
the change illustrated in Figure 5, from the condition in part
A to the condition in part B; that is, from the condition
where deposition is strictly at the interface to a condition
where deposition is distributed throughout a finite region
of the host material.

The remainder of the text is an effort to circumvent these
two defects.

Figure 5. Possible profiles of mean stress along the
east valley.

Part A shows a profile as discussed in the text and
shown obliquely in Figure 2. It is in two parts, a portion
that is concave downward along its full length and a ver-
tical portion or step at the interface (represented by the
short vertical line just outside the interface). These two
parts meet in a point that can be regarded as a concave-
upward portion with infinite curvature and infinitesimal
width. By contrast in part B, the portion that is concave
upward is of finite width. A stress field with this type of
profile leads to material accumulating by diffusion in a
dispersed manner throughout a finite region of the host
material, rather than in the localized manner of part A. It
is this type of profile that is sought in the second half of
the text. For part B, one can still assume that the north
profile has the form of the east profile inverted, and that
exactly the same distribution of material is lost from
north and south regions as is gained by the east and
west regions; those aspects of the problem remain sim-
ple.

Diffusive Gain or Loss not Isotropic
The present decade is interesting in that two different

ideas about diffusive gain and loss are in use. Consider an
extensive sample of material in which the stress is every-
where anisotropic and is also non-uniform. In particular
consider a small spherical element somewhere within the
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sample: if the material is viscous but non-diffusing the el-
ement will undergo strain at constant volume, but if it is
self-diffusing as well as viscous, it will deform with prin-
cipal strain rates that in general do not conserve volume. In
principle, one could run parallel experiments and, by sub-
traction, isolate just the strain rates attributable to the dif-
fusive process. Then the two ideas are:

(1) these isolated or partial strain rates must be the same
in all directions (i. e. diffusion by itself can turn a sphere
only into a smaller or larger sphere)

or
(2) the partial strain rates form a set whose principal

values at any point are in general different from one another
(i. e. diffusion by itself could turn a sphere into an ellip-
soid).

In the first theory, to predict diffusive effects one looks
at magnitudes and gradients of just the mean stress; in the
second theory, one has to look at all three separate princi-
pal-stress magnitudes rather than just their mean.

For illustration, consider the bending experiments in
Figure 6. Everyone agrees that in cylindrical bending, di-
agram A, diffusion can be initiated with a flux from the
inner surface to the outer. But in saddle bending, diagram
B, opinion is divided. In the center of the slab, the mean
stress is uniform from top to bottom, but vertical planes
running north-south are compressed more strongly normal
to the plane in the lower part of the test slab than in the
upper part, while vertical planes running east-west are
compressed more strongly in the upper part; that is, there
are gradients in the normal-stress components on these
planes, that cancel each other out to give no gradient in
mean stress. One wonders, Do the gradients drive diffusive
fluxes that contribute to the deformation of the saddle? As
far as I know, no such experiment has been reported. To
imagine spherical atoms like billiard balls favors the idea
of no diffusion in such a slab, but to imagine dislocation
loops, incomplete atom-planes and dislocation climb fa-
vors the idea that the gradients could drive some loops to
shrink and some to swell. I wish to give both ideas serious
attention and respect, but in this section it is the second that
we explore.

Figure 6. Two possible bending experiments

Two possible bending experiments where diffusive
transport in a vertical direction might occur.

[Idea 3: if the material itself is anisotropic, --- for ex-
ample, having a microstructure that is flaky or fibrous ---
loss by diffusion may be greater in one direction than in
another for that reason. But this idea is wholly separate: in
the present paper, the material itself has no anisotropy, it
is from the stress state that the anisotropy of the strain rates
arises.

For a fourth idea, concerning gain or loss at an interface,
see Fletcher (this volume).]

The Broad Field
Using reference directions as in Figure 2, consider a line

from the inclusion's center running north. As already
shown, the profile of mean stress along such a line is as in
Figure 7A. In absence of diffusion, if the inclusion is rigid,
profiles of the north-south or radial stress and the east-west
or tangential stress are as in Figure 7B (or if the inclusion
is stiff but not rigid, see Figure 7C; here the separation dis-
tances p and q are in proportion with the materials' viscos-
ities). In all three diagrams, for the mean stress the dimin-
ution outward (to northward) is proportional to 1/r2 and, in
the manner of Figure 2B, the upward curvature along this
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profile is exactly matched by a downward curvature of lines
in and out of the page, --- the two curvatures balance. We
now note that for the tangential stress, the upward curvature
is clearly greater than for the mean stress and except right
at the interface, the downward curvature is less; by contrast,
for the radial stress, the upward curvature has been largely
lost. Therefore, speaking geometrically, the tangential-
stress surface has a net upward curvature and the radial-
stress surface has a net downward curvature. If gradients
on these surfaces separately drive diffusion, the tangential-
stress variation will drive a net tangential accumulation
outside the north part of the interface, and the radial-stress
variation will drive a net radial loss; see Figure 7D. Along
a line out to eastward, all the opposite effects occur, so that
radial-stress variation drives a flux from north to east,
whereas tangential-stress variation drives a flux from east
to north. So far it remains true that no material element
either swells or shrinks in volume, but in the north, there is
radial shortening and tangential elongation while in the
east, there is radial elongation and tangential shortening. It
is reassuring to note that these are strains of the same type
as are occurring simultaneously by viscous creep; aniso-
tropic strain by diffusion adds to the deformation, it makes
the material yield more readily; one sees greater strain rates
and smaller stress peaks when this kind of diffusion is oc-
curring than if diffusion were to act isotropically or not at
all.

Figure 7. Stress profiles along the north axis

Stress profiles along the north axis and consequent
gains and losses of material.

(One might ask, about the north region for example: if,
as above, radial-stress variation drives radial loss of mate-
rial and tangential-stress variation drives tangential gain,
would not most of the material that moves simply "slip
round the corner" without ever leaving the site? No, radial
loss and tangential gain at the same location go on at what-
ever rate the viscosity permits, given the stress difference
at that location. We are looking here at additional radial
loss that occurs because the radial compression is lower on
either side of the north point, at neighboring points just to
the east and west.)

Details close to the inclusion
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Two concepts were illustrated in Figure 5 for the region
close to the cylindrical interface. Figure 5A suggests a dis-
continuity: the idea is that a film of newly-deposited ma-
terial forms and separates the two regions whose stress
fields etc. are described by the equations. In Figure 5B, by
contrast, a change in the curvature of the stress surface is
suggested. Such a stress field would lead to accumulation
not at the interface but in the region close to the interface;
material arriving from upstream would accumulate in a
dispersed manner continuously throughout the material of
the matrix in that region. The occurrence of augen suggests
that Figure 5A is closer to what happens in deforming
rocks, whereas Figure 5B is closer to what happens in many
other instances of chemical diffusion. Actually, even in
rocks, the loss of material by diffusion may occur in a dis-
persed, quasi-continuous manner; it may be only the gain
or deposition process that is localized in well defined pock-
ets. Anyway, setting reality aside, the theoretical work I
wish to extend (Fletcher 1982; Stephenson 1988; Finley
1994) is more in the manner of Figure 5B and therefore a
description more like 5B than 5A was sought.

The relevant equations are given in Appendix 3, and
some of the results are shown in Figures 8 and 9. Figure 8
shows stress magnitudes along a radial line to the east in
the direction-system of Figure 1. The effects of diffusion
are greatest close to the interface. Again the effect is to
diminish and smooth out peaks and extreme values; in par-
ticular the tangential compression sq no longer drops to
such an extreme value. The change of curvature proposed
in Figure 5 is seen: concave-upward curvature is noticeable
in sq and perceptible in sy . By themselves, these upward
curvatures would lead to accumulation of diffusing mate-
rial and elongation in the tangential and y-directions. How-
ever, the theory assumes a totally coherent interface: the
matrix is taken as firmly glued to the rigid inclusion and
cannot elongate at the interface except radially outward.
Instead of causing lateral swelling, then, the influx of dif-
fusing material leads to a stress build-up e.g. from a to b in
Figure 8; the material still swells, but constrictive stresses
force the effect to occur by radial elongation.

Figure 8.  Stress profiles along the east axis

Light lines are profiles unaffected by diffusion; in that
condition, sy and the mean stress are equal so the
curves here match Figure 7 (inverted) and Figures 5 and
2. Heavy lines show modified stress profiles such as
might be present when diffusive transport occurs and
gives unequal contributions to the strain rates radially
and tangentially. In particular, the concave-upward part
of the profile for sq leads to accumulation of material and
a tendency toward tangential elongation, but this is ex-
actly countered by σq now being greater than σy and σr which
by itself would give tangential shortening. Compared
with the light-line profiles, the change in magnitude of σq
and the change in curvature have to have equal and op-
posite effects on the tangential strain rate, if the matrix
is to remain coherent with the inclusion.
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Figure 9. Strain-rate profiles along the east axis.

The matrix swells, gaining material by diffusion, but be-
cause of being coherent with the rigid inclusion, at the
interface the swelling is entirely by radial elongation.

The strain-rate consequences are seen directly in Figure
9. The radial elongation ε r is noticeably larger when dif-
fusion operates, whereas the tangential shortening hardly
changes. Of course the latter is artificially pinned at zero at
the interface by our assuming perfect coherence. With this
constraint, it appears that as far out as 1.5 or 1.6 on the
radial scale, the tangential shortening is actually a little
greater when diffusion operates, as if the stress field over-
compensates; but the equations are only a coarse approxi-
mate solution, and this detail in the curves for eq may be
insignificant. The more important point is that we now see
unequal strain rates in the radial and tangential directions,
and increases of volume due to diffusion that are distributed
through the matrix in a continuous manner rather than as a
discrete sliver of new material at the interface.

Numerical values
Figures 8 and 9 show differences between behavior

when diffusion is occurring and when it is not. The differ-
ences are easily seen and are linked to important concepts,
but in the particular example calculated, they do not
amount to a large change in the overall strain field. This
conclusion can be illustrated in geological terms as follows.

Let the rigid inclusion be a chert nodule in limestone,
idealized to a circular cross-section of diameter 2 cm and
a much greater length. Let the limestone be deformed, for
example in the hinge of a fold, so that a region around the
nodule is changed from a 10-cm square to a rectangle 6.25

cm by 16 cm. We focus attention on points 5 mm out from
the nodule boundary, or 1.5 cm from its centerline. If the
nodule were as readily deformable as its matrix, in the di-
rection of maximum elongation such a point would move
through 9 mm to end 2.4 cm out. If the nodule is rigid and
no diffusion occurs, the motion would be reduced to 1 mm;
a rigid nodule powerfully inhibits deformation of its im-
mediate surroundings. Now let diffusion run, with stresses
as in Figure 8 yielding strain rates as in Figure 9: the out-
ward motion of the point in view would increase only about
14% --- an extra motion of only a fraction of a millimeter
during the total episode of deformation. This small change
is of course tied directly to the particular example described
in Appendix 3, and specifically to the value of the charac-
teristic length L in that example (0.188 x the inclusion ra-
dius). If L had a larger value, the effect of diffusion would
be greater; even so, part of the effect is to reduce the stress
concentrations; the effect of diffusion does not appear
wholly in the form of enhanced strain rates.

Need we look at actual stress magnitudes and duration
of the deformation episode? No, the length L is the essential
parameter. Suppose (unrealistically) that the change in di-
mensions of the reference square from 10 cm to 16 cm oc-
curred at a constant strain rate of 3.10-14 per sec for (6.7).
1012 sec, in a rock of effective viscosity 1020 Pa-sec; then
the driving stress difference must have been 12 MPa, and
the diffusion coefficient K = 9x10-27 m2-Pa-1-sec-1,
(from L2/4N). Now suppose the temperature or the pore-
fluid chemistry were different so that the effective viscosity
was only half as much: the time for the deformation would
change, but experience indicates that K would increase by
a factor close to 2 --- (K and N varying inversely), --- so
that L would not change and, like the total strain, the same
total diffusive effect would be gained at twice the rate in
half the time.

Discussion and conclusions
The main idea inspected is: when material is gained or

lost by diffusive mass transfer, the gain or loss need not be
the same in all directions; inside even an isotropic contin-
uum, a small spherical element can be changed to an ellip-
soid by unequal diffusive gains or losses as well as by the
more commonly envisaged process of deformation at con-
stant volume.

A more careful statement of the same idea is as follows.
Suppose that at some point in the material, the deformation
at some moment can be described using a strain-rate tensor:
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then if the material is both viscous with viscosity N and
self-diffusing under stress with coefficient K, the total
strain-rate tensor can be partitioned into a first part con-
trolled by N and the stress state at the point, and a second
part controlled by K and the variation in stress around the
point. The main idea in view is that the latter part of the
strain-rate tensor need not be isotropic and in general will
not be. By contrast, a different idea also considered in the
body of the paper is that the K-related second part is nec-
essarily isotropic, i. e. gain or loss of material by diffusive
mass transfer can change a spherical element only to a
larger or smaller sphere.

In parallel with the two ideas about the mass-transfer
part of the strain-rate tensor, there are two ideas about the
driving gradient. One can consider the gradient through
space of just the mean stress (which has a single value at
any point considered) or one can consider the gradients
through space of several separate stress components. The
version using mean stress goes with the idea that a sphere
changes only to another sphere. I have tried to show that
one can make a certain amount of progress using either
version, mean stress plus isotropic strain by mass transfer
OR full stress state plus anisotropic strain by mass transfer;
Figure 4 and Appendix 1 are based on the first version, and
Figures 8 and 9 and Appendix 3 on the second.

The two versions just discussed both treat diffusive
mass transfer through the body of the material, but there is
also the option of considering diffusive mass transfer only
at bounding surfaces or interfaces (see Fletcher, this vol-
ume). When applied to a fold or a boudin, this approach is
quite different from considering the interiors of rock units
in the manner of the present paper; but if one considers the
grain interfaces inside an extensive body of granular rock
and then averages over many grains, the resulting equations
have much in common with those for the interior of a con-
tinuum. Fletcher (1982) took this approach and, in course
of averaging, took the mean-stress/isotropic-strain-rate op-
tion for gains and losses by diffusive mass transfer (1982,
p. 278,279). I believe that no theory has yet taken the par-
allel path, combining attention to interfaces with the ani-
sotropic-strain-rate option, despite the fact that rock thin-
sections contain abundant features prompting thoughts in
that direction e. g. intergranular seams of insoluble material
that appear to be residues.

It might seem that a continuum theory is basically dif-
ferent from any theory built by treating a rock unit as a mass
of grains separated by interfaces, but the difference is not

as great as at first appears. Macroscopic experiments de-
signed to give estimates of N and K ignore whatever mi-
crostructure a real material may have, but as discussed in
the main text and in Appendix 2, any pair of experimental
values for N and K defines a characteristic length L for the
material. I believe this length L, of the order of nanometers
or micrometers, arises from the real material's microstruc-
ture; then if, in a theory, we postulate that a continuum has
properties N and K, we implicitly suggest that the contin-
uum has some kind of microstructure. The difference is that
in the "continuum theory" we suggest nothing about what
the microstructure is, and make no distinctions such as that
between interfaces and grain interiors. But in Fletcher's
approach, after individual grains have been considered, the
averaging step smoothes over the geometrical details of the
interfaces and solid grains. So in the granular treatment, the
microstructure is specified but smoothed over, whereas in
the continuum treatment, a microstructure is not specified
but is implied. The two approaches are complementary and
illuminate each other.

On the other hand, a difference between two basic ideas
remains. Whenever there is diffusive mass transfer from a
high-compression source toward a low-compression sink,
we suppose that the flux is linked to some kind of stress
gradient. One version holds that at any point in such a gra-
dient, the relevant quantity is a single stress magnitude; the
other version holds that in general all three principal stress
magnitudes are relevant and that it is only when attention
is confined to diffusion along a surface that a single stress
magnitude per point suffices. To insist on a single value at
each point or to admit a suite of values at each point are
two fundamentally different ways of proceeding.

The same two options are current regarding chemical
potential. The idea that a component's chemical potential
can have only one value at a point is of rather long standing;
the second idea, that in a stressed material the potential has
a suite of values at a single point, was proposed by Ramberg
(1959; for the same proposal in a more accessible journal,
see Ramberg 1963). Independently Bowen (1967, 1976)
proposed a chemical potential tensor, with principal values
conforming to Ramberg's definitions. A strong endorse-
ment of this approach is given by Grinfeld (1991, p. 2 and
132). Most interestingly, Green (1986) uses Bowen's tensor
(Green's symbol Gij, p. 202) but states that " it would be
misleading to call Gij the Free Enthalpy tensor because the
Free Enthalpy is a scalar quantity." Having recognized the
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tensor, he directs attention strictly to an interface and uses
only a single component from it.

Conclusions We take pure shear of a highly viscous
cylinder in a less viscous matrix as a sample problem where
diffusive mass transfer may occur. Fletcher (this volume)
approaches the problem assuming diffusion only along the
interface, while Finley (1994,1996) approaches it assum-
ing only volume-diffusion. There is no incompatibility
here; in a real situation, diffusion is likely to run both at the
interface and through the volume, and the separate treat-
ments are useful steps toward something more compre-
hensive.

In the present paper, two more treatments are offered,
both emphasizing volume diffusion, both incomplete. In
the first, we assume that diffusive mass transfer is driven
by a gradient in the field of mean-stress magnitudes; in the
second, we assume that gradients in several separate stress
components need to be considered for a full analysis of
diffusion effects. The conclusion is that both approaches
deserve attention and need more work. (A fifth approach
(Bayly and Minkel, in press) uses finite elements and ex-
plores further details.) The problem turns out to be quite
intricate but a benefit is that it encourages attention to a
number of behaviors that will reappear in other geometrical
configurations. My personal expectation is that for volume
diffusion, using several separate stress components will
gain acceptance as being fundamentally correct, but that in
many instances, using just the mean stress will be a wholly
satisfactory approximation. Also diffusion at interfaces
governed by the interface normal stress will in many sit-
uations be more important.

Facts so far ignored are that any real inclusion differs
from its matrix in both composition and density. Conse-
quences of a density contrast are explored by Green (1986)

and consequences of variable composition by Bayly (1992,
chapters 15 and 16). Consequences of the high mobility of
cations compared with components of the Al-Si-O sub-
strate are noted by Bayly (1987 p. 577, 578). A corollary
is that hydrogen ions (protons) will tend to diffuse toward
high-compression sites and mobilize oxygen atoms there
by detaching them from the substrate. Overall, much re-
mains to be done; there are many avenues to explore.

In concluding I revert to the fact that in this volume we
honor Win Means' contributions. His demonstrations of
what can be learned from bench-top analogs are a continu-
ing source of insights and stimuli. A photographic record
of some augen growing may soon be available to guide the
construction of relevant theories and to strengthen the link
to behaviors in real rocks.

Editor's Note
Note that this special volume is also preserved in its

original format.
To see this paper in that format copy the link below into

your browser
http://virtualexplorer.com.au/webroot/special/mean-

svolume/contribs/bayly/index.html
or click on the link provided  here.
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A. Appendix 1: An embedded cylinder
in pure shear

The remote stress field shown in Figure 1 has principal
stresses M+S and M-S, imagined as compressions. Even-
tually we shall want to consider the interface to be coherent
and an overall compression M helps to make this plausible.
But such an overall compression has no effect on the de-
formation or the associated stress variations; these can be
fully discussed with remote principal stresses of S and S',
without the M. Additionally, for algebraic purposes it is
convenient to have elongation rates as positive and hence
to have tensile stresses as positive also; thus we consider a
tension S to east and west and a compression S' from north
and south. We use polar coordinates (r,q) with the interface
at r = 1 and the direction of maximum tension as q = 0.

A solution of the corresponding elastic problem in absence
of diffusion is given by Muskhelishvili (1963) and fol-
lowed by Jaeger and Cook (1979), but their powerful gen-
eral method is not readily extended to conditions that in-
clude diffusion. By contrast the following method is of
narrow application but can be extended so as to shed light
on diffusive behavior.

Assume that the stress field can be described by a series of
terms of the form A.rN.cos mq; then for reasons of sym-
metry, m must be an even integer. Also, stress magnitudes
must not become infinite at r = 0, so that inside the
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inclusion, no term can have N negative; similarly, stress
magnitudes must not become infinite at remote points () so
that outside the inclusion, no term can have N positive.

To narrow the range of possibilities farther, it is convenient
to look at a different term B.rn.cos mq and to name it f. The
convenience lies in the fact that if we put

[1a,b,c]

we automatically conserve momentum and describe steady
flows, with no accelerations. Specifically for f = B.rn.cos
mq,

[2a,b,c]

If the material remains continuous, it will also be true that

[3]

where er and eq are linear strain rates and g is the engi-
neering shear strain rate (twice the tensor shear strain rate).
For a Newtonian material of viscosity N,

[4a,b,c]

Let the direction of the cylindrical inclusion's long axis be
y. Then if ey = 0 (plane strain),

[4d,e]

If [2a,b,c] are used in [4c,d,e], the continuity equation [3]
shows that

[5a,b]

In particular, for variation specifically with cos 2q, m = 2
and n = 4, 2, 0 or 2'.

Because of the restrictions on the powers of r in the stress
terms, N or n-2 as discussed above, we conclude that inside
the inclusion n = 4 or 2 and outside the inclusion n = 2, 0
or 2'. For the value n = 2, the r -dependence drops out of
the stress terms; the pair m = 2, n = 2 describes just a ho-
mogeneous stress field such as would exist throughout the
entire region if the inclusion were mechanically no differ-
ent from the matrix.

The conclusion so far is that for the interior of the inclusion,
a possible form is

[6a]

and for the exterior,

[6 b]

where a, b, d, f and g are coefficients yet to be determined.
At once, d is fixed by the stress state as r becomes infinite:
at q = 0, sr(inf) = S so, from equation [2b], we need d = -
S/2. The remaining coefficients a, b, f and g can be chosen
according to whatever conditions we wish to satisfy at the
interface.

The classical conditions at the interface are:

equal stresses, (sr)i = (sr)e and ti = te, [7a,b]

and equal velocities (to maintain coherence),

ui = ue radial and vi = ve tangential [7c,d].

These yield

[8a,b,c,d]

where R is the ratio (viscosity)i/(viscosity)e. Putting these
expressions into (6a) and (6b) gives the same stress func-
tions as are derived by Muskhelishvili (1963). In particular,
the value a = 0 corresponds with the notable fact that the
stress field throughout the inclusion is homogeneous, and
this value of a is derived specifically from the interface
conditions given. Any other interface conditions are likely
to yield a non-zero value for a and an inhomogeneous stress
field in the inclusion.

From the main text, we would like to find interface condi-
tions that would allow for the material diffusing away from
the north and south quadrants of the interface and accu-
mulating at the east and west quadrants. To allow the radial
velocities ui and ue to be unequal is an obvious choice; then
at the east point, for example, a gap opens at the rate ue'ui
and we can seek a balance between this rate and the rate at
which material is arriving by diffusion. But once the proc-
ess of deposition at the interface gets under way, it is not
at all clear how the other interface conditions (7a, b and d)
would change. For present purposes, we focus attention on
just the moment when deposition begins, when the depos-
ited film or sliver is infinitesimally thin, and propose that
at this moment conditions (7a, b and d) can still be applied.
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This is clearly just a first step toward a more realistic anal-
ysis.

With ui and ue unequal, we can introduce b where ue = b.ui
and now find:

as before, [9a,b,c,d].

If we use these values to estimate and close to the interface
and assume that the diffusivities of inclusion and matrix
are also in the ratio R (Ke/Ki = R = Ni/Ne), we derive for
any interface point:

[10a,b,c,d]

Also,

[11]

so the diffusive fluxes take care of the excess or deficit at
the interface if

[12]

The product 4KiNi = L2 where L is a characteristic length
of the material of the inclusion. Thus for example for R =
10, b = 5/4 if L = 1/6, or b = 2 if L = 1/3. Diffusion not only
enables the matrix to deform more freely, it reduces the
height of the stress maxima; for example, in the condition
(R =10, L = 1/3 and b = 2), the radial compression at the
north point is about 0.8 of its magnitude without diffusion.

For larger values of b or R, the exact form [10c] has to be
used, and as R tends to infinity and ui tends to zero,

[13]

For example, if L2 = 0.2, ue = S cos 2q/6Ne or specifically
at the east point, ue = S/6Ne. (For comparison, if we re-
placed a rigid inclusion by material homogeneous with the
matrix, then at the east point of a circle of radius 1 we
should find ue = S/2Ne). Again, diffusion allows the matrix
to deform as if the inclusion were much less viscous than
it is. In fact algebraically, if we put L2 = 1 into equation
(13), ue = S/2Ne as for a homogeneous material. But Ap-
pendix 2 shows that treating a material with microstructure
as a continuum becomes increasingly unrealistic as L2 in-
creases above 0.1 or 0.2; it is more the qualitative trend in
these results that is of value.

B. Appendix 2: The characteristic
length L

For a physical picture of the length L, consider two com-
pressive stresses s1 and s2, and a small element of material
that is part of, and embedded within, a larger extent. If s1
is imposed on the element north-south and s2 is imposed
east-west, a north-south shortening strain rate will be
present, --- (s1-s2)/4.(viscosity) in plane strain or (s1-s2)/
3.(viscosity) with cylindrical symmetry . Now consider a
different situation where one site within the material is
compressed hydrostatically by s1 and a site not far away is
compressed hydrostatically by s2; in this set-up, there is
radial shortening at the high-stress s1 site because of self-
diffusion of material away to the low-stress s2 site. The rate
of radial shortening depends on the separation-distance of
the two sites, and there is some separation distance such
that the radial shortening rate by self-diffusion equals the
viscous shortening rate in the first situation. This particular
separation-distance is the length L (or, in some formula-
tions, a small multiple of it such as L/2).

In most practical situations, L is less than a micrometer. In
fact, there is an inherent awkwardness: the manner in which
L is defined above assumes that the material is ideally con-
tinuous, whereas both creep and self-diffusion depend on
the material having microstructure, such as atoms and dis-
location loops; and L is so short that, on the scale of L, one
sees the microstructure, --- one cannot reasonably treat the
material as a continuum.

A resolution is as follows: we admit that every material is
atomic; this includes admitting that "homogeneous" plane
strain involves atoms moving around, dislocation loops
expanding or shrinking and so on; then in homogeneous
plane strain, there is an average distance an atom moves in
contributing to the strain process. Where the dominant
mechanism is dislocation-climb, for example, the average
distance would be of the order of magnitude of the length
of a dislocation or the separation of one dislocation from
the next. A second view is that L is an estimate of this
average distance.

Fortunately, the two views of L are, I think, wholly com-
patible. If one works wholly at the macro-scale using ma-
terial slabs as in Figure 6, one can measure viscosity N and
diffusivity K, respectively in Pa-sec and m2-Pa-1-sec-1.
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Then (4NK)1/2 is a distance, --- determined macroscopi-
cally but informing us about the microstructure; I think it
tells us the average distance a participating atom moves
when the material undergoes homogeneous deformation,
or is a good indicator of that distance.

(Of course, (NK)1/2 --- without the 4 --- is also a distance.
As a purely technical point, to define L as (4NK)1/2 leads
to neater equations, but currently estimates of K are so un-
certain that the factor of 4 has no practical significance.)

A third view of L or L2 is gained if we use the idea of a
material's mobility m, with m = 1/N. Then L2 = 4K/m or
m = 4K/L2. For an atomic material with self-diffusion co-
efficient K, the shorter the distance L that an atom has to
travel in contributing to change of shape, the greater the
mobility m with which the material will deform.

C. Appendix 3: Anisotropic gain or loss

The whole of Appendix 1 rests on the observation that in
the classical description of stresses around a cylindrical in-
clusion, If one's assumptions about diffusion are:

conservation of volume, i.e.

linear strain rate e or dl/l.dt = (dV/V.dt)/3 in all directions,

(with elongations and tensile stresses positive) then what-
ever fluxes might be driven by gradients in the mean stress
in the classical description, they would flow through the
material without changing any dimensions, and would af-
fect the stress field only by affecting conditions at the cy-
lindrical interface. The purpose of this appendix is to ex-
plore the following alternative assumption: in place of

for all directions, we postulate

[1a,b,c]

(which leave the volume strain rate as before). These, of
course, are only the parts of the strain rate due to diffusion;
if the material also creeps with viscosity N, the total effects
are:

[2a,2b]

etc.

The intention is to pursue the ambition illustrated in Figure
5 using these alternative rheological assumptions.

[The postulates (1a, b, c) have been derived from funda-
mental concepts elsewhere, in a skeletal manner (Bayly
1988, 1996) and at greater length (Bayly 1992), and the
associated flow law or constitutive relation is shown in
Supplement 3. Here the ambition is not to advocate but
merely to test the postulates by results: can they yield a
stress field, a strain-rate field and a pattern of diffusive
fluxes? If they can, do the results "look reasonable"?]

As in Appendix 1, we use polar coordinates, seek a stress
function j rather than seeking the stresses themselves di-
rectly, and imagine a series of terms in j for any of which
B.rn.cos mq can be taken as representative. As before, de-
rived stresses are

[3a,b,c]

(conserving momentum), and again we wish to use the
strain-rate relation that exists for any continuous velocity
field,

[4]

To use this relation, we need expressions for er, eq and g,
for which we need in turn expressions for and and for the
shear-strain consequences of the diffusion postulates in
equation-set [1].

For a single-valued scalar variable f, in polar coordinates
is

but sr is not a single-valued scalar: it is a scalar component
of a tensor and thus a multivalued direction dependent sca-
lar.

Then:

[5a,b,c]

(see Supplement 1 below).For a term B.rn.cosmq in j these
yield:

[6a,b,c]

To use these relations, one can seek a suitable series of
terms in j, as in Appendix 1 at equations [6a and b]. For
any such series, stresses in the (r,q) plane can be derived
using equations [1a-c] of Appendix 1. But in a material with
self-diffusion, equations [4d and e] of Appendix 1 cannot
be reached; the plane-strain condition no longer establishes
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sy = (sr+sq)/2; it yields only an equation like equation [2b]
above, viz.:

[7]

for plane strain. Hence one needs to seek not only a suitable
series of terms for j but also a suitable separate series for
sy, such that in combination with each other the results
satisfy the geometrical relation [4] and the boundary con-
ditions. Both series are likely to be infinite, and to find such
a pair by analytical methods is a difficult task, not attemp-
ted here. Instead, for purposes of illustrating the problem,
just two extra terms are added to j and two to sy. With these
additions, the plane-strain condition is almost satisfied, and
for geometrical continuity only a slight degree of material
anisotropy is needed. Further comments on the usefulness
and weaknesses follow the presentation of the results them-
selves. Even for this elementary approach, the problem was
further simplified by taking the inclusion to be wholly rigid
and non-diffusing; it is only the behavior outside the in-
clusion that we try to describe.

An approximate solution
The solution explored is:
Basis for the solution The terms multiplying cos 2q are

the classical solution for a non-diffusing material. One can
assume that diffusion effects will be stronger closer to the
cylindrical interface and weaker far from it, so that higher
powers of r will be needed in the added terms. Along with
higher powers of r, higher powers or multiples of cos 2q
seem appropriate, and cos 6q is the first multiple that sat-
isfies the symmetry requirements in Figure 1. Using even
powers of r is simply an algebraic convenience; choosing
which powers to use is a matter partly of subjective judg-
ment (see also the Discussion section below). Once powers
of r have been selected, the numerical factors are fixed by
four conditions as follows: (1) if the inclusion is non-dif-
fusing, there can be no diffusive flux across the interface;
if sr, sq and sy are taken to be independent agents each
driving its own flux, we need three separate conditions at
the interface:

[10a,b,c]
(2) Although in the matrix generally, plane strain is

achieved only approximately, at the interface we can sat-
isfy that condition exactly.

Corollaries of the solution Profiles of sr, sq and sy are
shown in Figures 8 and 9. The expressions derived from j
are:

[11a-g]
These satisfy the boundary conditions ey = eq = 0 at

(r=1, q=0) if the material's characteristic length L is 0.188
times the inclusion's radius, or L2 = 4NK = 0.0354. With
these expressions, the linear strain rates follow from equa-
tions like equation [2].

To assess the quality of the approximate solution in
view, one can look at the two conditions we wish to satisfy.
First, we seek plane strain: ey should be zero not only at
the interface but at all values of r and q; see Figure A3.1.
Second, we have to maintain geometrical continuity in the
material, in its velocity field; that is, the strain rates should
satisfy equation [4]. On the left of this equation, g is linked
to t through the material's shear viscosity, whereas on the
right the linear strain rates eq and er involve the stretching
or shortening viscosity. In principle, whatever the stress
fields, one can satisfy [4] by postulating just the needed
material properties at every point, but for realism, we wish
to rely on this artifice as little as possible. That is, if we
make the trial for an isotropic material, we wish to find the
left-hand side of equation [4] not very different from the
right-hand side. Figure A3.2 shows the comparison for q =
0°, 15° and 30°; at 45°, both sides of the equation go to zero
and higher values of q merely repeat the same sequence of
comparisons. The agreement is not as close as one would
wish; I imagine a more accurate solution would involve
more powers of r and other multiples of q; but I also imag-
ine that the extra algebraic complexity would not bring new
principles to light; the present solution serves as regards
bringing the needed principles into play.

Figure A3.1 Deviation of ey from plane strain.
Figure A3.2 The two sides of equation [4] compared,

assuming that the material in view is isotropic.
[An obvious extension would be to admit diffusion and

viscous creep in the inclusion as well as in the matrix, as
in Finley's study (1994), but this too would not involve new
principles.]

Discussion Two aspects are touched upon, namely, the
choice of powers of r in the trial solution [8] and [9] and a
desirable refinement of equation-set [1].

As regards choice of powers of r, a point not yet made
is that the one-dimensional solution is available as a guide:
if the radius of the inclusion tends toward infinite while the
characteristic length L remains fixed, conditions just
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outside the interface approach those at a planar interface,
which are better known (Fletcher 1982; Bayly 1992 chapter
13). Specifically, at a planar interface, the rates of expo-
nential diminution of stress away from the interface can be
examined. As already remarked, when diffusion operates,
we lose the simple relation sy = (sx+sz)/2 or (sr+sq)/2 and
sy diminishes at its own rate with distance. In an appendix
to chapter 13, it is shown that sy diminishes less rapidly
outward than sz , and this fact led to smaller negative pow-
ers of r being used in equation [9] than in equation [8].

Secondly, in traditional uses of a Laplacian operator, the
operand, for example temperature, is totally free of direc-
tional properties; but when the operand is directional, as in
equation-set [1], the following seems desirable: in place of

one should write,
[12]
The distinction of J from K was not made earlier for the

sake of simplicity, but logically it is a distinction that must
be made.

Basis for the solution
An Approximate Solution
The solution explored is:
Basis for the solution The terms multiplying cos 2q are

the classical solution for a non-diffusing material. One can
assume that diffusion effects will be stronger closer to the
cylindrical interface and weaker far from it, so that higher
powers of r will be needed in the added terms. Along with
higher powers of r, higher powers or multiples of cos 2q
seem appropriate, and cos 6q is the first multiple that sat-
isfies the symmetry requirements in Figure 1. Using even
powers of r is simply an algebraic convenience; choosing
which powers to use is a matter partly of subjective judg-
ment (see also the Discussion section below). Once powers
of r have been selected, the numerical factors are fixed by
four conditions as follows: (1) if the inclusion is non-dif-
fusing, there can be no diffusive flux across the interface;
if sr, sq and sy are taken to be independent agents each
driving its own flux, we need three separate conditions at
the interface:

[10a,b,c]
(2) Although in the matrix generally, plane strain is

achieved only approximately, at the interface we can sat-
isfy that condition exactly.

Corollaries of the solution Profiles of sr, sq and sy are
shown in Figures 8 and 9. The expressions derived from j
are:

[11a-g]
These satisfy the boundary conditions ey = eq = 0 at

(r=1, q=0) if the material's characteristic length L is 0.188
times the inclusion's radius, or L2 = 4NK = 0.0354. With
these expressions, the linear strain rates follow from equa-
tions like equation [2].

To assess the quality of the approximate solution in
view, one can look at the two conditions we wish to satisfy.
First, we seek plane strain: ey should be zero not only at
the interface but at all values of r and q; see Figure A3.1.
Second, we have to maintain geometrical continuity in the
material, in its velocity field; that is, the strain rates should
satisfy equation [4]. On the left of this equation, g is linked
to t through the material's shear viscosity, whereas on the
right the linear strain rates eq and er involve the stretching
or shortening viscosity. In principle, whatever the stress
fields, one can satisfy [4] by postulating just the needed
material properties at every point, but for realism, we wish
to rely on this artifice as little as possible. That is, if we
make the trial for an isotropic material, we wish to find the
left-hand side of equation [4] not very different from the
right-hand side. Figure A3.2 shows the comparison for q =
0°, 15° and 30°; at 45°, both sides of the equation go to zero
and higher values of q merely repeat the same sequence of
comparisons. The agreement is not as close as one would
wish; I imagine a more accurate solution would involve
more powers of r and other multiples of q; but I also imag-
ine that the extra algebraic complexity would not bring new
principles to light; the present solution serves as regards
bringing the needed principles into play.

Figure A3.1 Deviation of ey from plane strain.
Figure A3.2 The two sides of equation [4] compared,

assuming that the material in view is isotropic.
[An obvious extension would be to admit diffusion and

viscous creep in the inclusion as well as in the matrix, as
in Finley's study (1994), but this too would not involve new
principles.]

Discussion Two aspects are touched upon, namely, the
choice of powers of r in the trial solution [8] and [9] and a
desirable refinement of equation-set [1].

As regards choice of powers of r, a point not yet made
is that the one-dimensional solution is available as a guide:
if the radius of the inclusion tends toward infinite while the
characteristic length L remains fixed, conditions just out-
side the interface approach those at a planar interface,
which are better known (Fletcher 1982; Bayly 1992 chapter
13). Specifically, at a planar interface, the rates of
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exponential diminution of stress away from the interface
can be examined. As already remarked, when diffusion
operates, we lose the simple relation sy = (sx+sz)/2 or (sr
+sq)/2 and sy diminishes at its own rate with distance. In
an appendix to chapter 13, it is shown that sy diminishes
less rapidly outward than sz , and this fact led to smaller
negative powers of r being used in equation [9] than in
equation [8].

Secondly, in traditional uses of a Laplacian operator, the
operand, for example temperature, is totally free of direc-
tional properties; but when the operand is directional, as in
equation-set [1], the following seems desirable: in place of

one should write,
[12]
The distinction of J from K was not made earlier for the

sake of simplicity, but logically it is a distinction that must
be made.

Corollaries of the solution
An Approximate Solution
The solution explored is:
Basis for the solution The terms multiplying cos 2q are

the classical solution for a non-diffusing material. One can
assume that diffusion effects will be stronger closer to the
cylindrical interface and weaker far from it, so that higher
powers of r will be needed in the added terms. Along with
higher powers of r, higher powers or multiples of cos 2q
seem appropriate, and cos 6q is the first multiple that sat-
isfies the symmetry requirements in Figure 1. Using even
powers of r is simply an algebraic convenience; choosing
which powers to use is a matter partly of subjective judg-
ment (see also the Discussion section below). Once powers
of r have been selected, the numerical factors are fixed by
four conditions as follows: (1) if the inclusion is non-dif-
fusing, there can be no diffusive flux across the interface;
if sr, sq and sy are taken to be independent agents each
driving its own flux, we need three separate conditions at
the interface:

[10a,b,c]
(2) Although in the matrix generally, plane strain is

achieved only approximately, at the interface we can sat-
isfy that condition exactly.

Corollaries of the solution Profiles of sr, sq and sy are
shown in Figures 8 and 9. The expressions derived from j
are:

[11a-g]

These satisfy the boundary conditions ey = eq = 0 at
(r=1, q=0) if the material's characteristic length L is 0.188
times the inclusion's radius, or L2 = 4NK = 0.0354. With
these expressions, the linear strain rates follow from equa-
tions like equation [2].

To assess the quality of the approximate solution in
view, one can look at the two conditions we wish to satisfy.
First, we seek plane strain: ey should be zero not only at
the interface but at all values of r and q; see Figure A3.1.
Second, we have to maintain geometrical continuity in the
material, in its velocity field; that is, the strain rates should
satisfy equation [4]. On the left of this equation, g is linked
to t through the material's shear viscosity, whereas on the
right the linear strain rates eq and er involve the stretching
or shortening viscosity. In principle, whatever the stress
fields, one can satisfy [4] by postulating just the needed
material properties at every point, but for realism, we wish
to rely on this artifice as little as possible. That is, if we
make the trial for an isotropic material, we wish to find the
left-hand side of equation [4] not very different from the
right-hand side. Figure A3.2 shows the comparison for q =
0°, 15° and 30°; at 45°, both sides of the equation go to zero
and higher values of q merely repeat the same sequence of
comparisons. The agreement is not as close as one would
wish; I imagine a more accurate solution would involve
more powers of r and other multiples of q; but I also imag-
ine that the extra algebraic complexity would not bring new
principles to light; the present solution serves as regards
bringing the needed principles into play.

Figure A3.1 Deviation of ey from plane strain.
Figure A3.2 The two sides of equation [4] compared,

assuming that the material in view is isotropic.
[An obvious extension would be to admit diffusion and

viscous creep in the inclusion as well as in the matrix, as
in Finley's study (1994), but this too would not involve new
principles.]

Discussion Two aspects are touched upon, namely, the
choice of powers of r in the trial solution [8] and [9] and a
desirable refinement of equation-set [1].

As regards choice of powers of r, a point not yet made
is that the one-dimensional solution is available as a guide:
if the radius of the inclusion tends toward infinite while the
characteristic length L remains fixed, conditions just out-
side the interface approach those at a planar interface,
which are better known (Fletcher 1982; Bayly 1992 chapter
13). Specifically, at a planar interface, the rates of expo-
nential diminution of stress away from the interface can be
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examined. As already remarked, when diffusion operates,
we lose the simple relation sy = (sx+sz)/2 or (sr+sq)/2 and
sy diminishes at its own rate with distance. In an appendix
to chapter 13, it is shown that sy diminishes less rapidly
outward than sz , and this fact led to smaller negative pow-
ers of r being used in equation [9] than in equation [8].

Secondly, in traditional uses of a Laplacian operator, the
operand, for example temperature, is totally free of direc-
tional properties; but when the operand is directional, as in
equation-set [1], the following seems desirable: in place of

one should write,
[12]
The distinction of J from K was not made earlier for the

sake of simplicity, but logically it is a distinction that must
be made.

Discussion
An Approximate Solution
The solution explored is:
Basis for the solution The terms multiplying cos 2q are

the classical solution for a non-diffusing material. One can
assume that diffusion effects will be stronger closer to the
cylindrical interface and weaker far from it, so that higher
powers of r will be needed in the added terms. Along with
higher powers of r, higher powers or multiples of cos 2q
seem appropriate, and cos 6q is the first multiple that sat-
isfies the symmetry requirements in Figure 1. Using even
powers of r is simply an algebraic convenience; choosing
which powers to use is a matter partly of subjective judg-
ment (see also the Discussion section below). Once powers
of r have been selected, the numerical factors are fixed by
four conditions as follows: (1) if the inclusion is non-dif-
fusing, there can be no diffusive flux across the interface;
if sr, sq and sy are taken to be independent agents each
driving its own flux, we need three separate conditions at
the interface:

[10a,b,c]
(2) Although in the matrix generally, plane strain is

achieved only approximately, at the interface we can sat-
isfy that condition exactly.

Corollaries of the solution Profiles of sr, sq and sy are
shown in Figures 8 and 9. The expressions derived from j
are:

[11a-g]
These satisfy the boundary conditions ey = eq = 0 at

(r=1, q=0) if the material's characteristic length L is 0.188
times the inclusion's radius, or L2 = 4NK = 0.0354. With

these expressions, the linear strain rates follow from equa-
tions like equation [2].

To assess the quality of the approximate solution in
view, one can look at the two conditions we wish to satisfy.
First, we seek plane strain: ey should be zero not only at
the interface but at all values of r and q; see Figure A3.1.
Second, we have to maintain geometrical continuity in the
material, in its velocity field; that is, the strain rates should
satisfy equation [4]. On the left of this equation, g is linked
to t through the material's shear viscosity, whereas on the
right the linear strain rates eq and er involve the stretching
or shortening viscosity. In principle, whatever the stress
fields, one can satisfy [4] by postulating just the needed
material properties at every point, but for realism, we wish
to rely on this artifice as little as possible. That is, if we
make the trial for an isotropic material, we wish to find the
left-hand side of equation [4] not very different from the
right-hand side. Figure A3.2 shows the comparison for q =
0°, 15° and 30°; at 45°, both sides of the equation go to zero
and higher values of q merely repeat the same sequence of
comparisons. The agreement is not as close as one would
wish; I imagine a more accurate solution would involve
more powers of r and other multiples of q; but I also imag-
ine that the extra algebraic complexity would not bring new
principles to light; the present solution serves as regards
bringing the needed principles into play.

Figure A3.1 Deviation of ey from plane strain.
Figure A3.2 The two sides of equation [4] compared,

assuming that the material in view is isotropic.
[An obvious extension would be to admit diffusion and

viscous creep in the inclusion as well as in the matrix, as
in Finley's study (1994), but this too would not involve new
principles.]

Discussion Two aspects are touched upon, namely, the
choice of powers of r in the trial solution [8] and [9] and a
desirable refinement of equation-set [1].

As regards choice of powers of r, a point not yet made
is that the one-dimensional solution is available as a guide:
if the radius of the inclusion tends toward infinite while the
characteristic length L remains fixed, conditions just out-
side the interface approach those at a planar interface,
which are better known (Fletcher 1982; Bayly 1992 chapter
13). Specifically, at a planar interface, the rates of expo-
nential diminution of stress away from the interface can be
examined. As already remarked, when diffusion operates,
we lose the simple relation sy = (sx+sz)/2 or (sr+sq)/2 and
sy diminishes at its own rate with distance. In an appendix
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to chapter 13, it is shown that sy diminishes less rapidly
outward than sz , and this fact led to smaller negative pow-
ers of r being used in equation [9] than in equation [8].

Secondly, in traditional uses of a Laplacian operator, the
operand, for example temperature, is totally free of direc-
tional properties; but when the operand is directional, as in
equation-set [1], the following seems desirable: in place of

one should write,
[12]
The distinction of J from K was not made earlier for the

sake of simplicity, but logically it is a distinction that must
be made.

D. Supplement 1 The Laplacian
operator in polar coordinates modified

The Laplacian of a scalar field i.e. the divergence of the
gradient, exists independently of any coordinate system.
But frequently the field of scalar magnitudes is specified
by means of a coordinate system, and the Laplacian at any
point is evaluated by an algebraic expression using first and
second derivatives with respect to the variables of position
(x,y), (r,q) etc. At equation-set [5], Laplace functions are
shown for the stress components sr, sq and t. The functions
shown contain the standard terms for a two-dimensional
scalar field in polar coordinates plus an extra term in each
expression. The purpose of this supplement is to show how
the extra terms arise.

First we rehearse in a diagram the source of the three stand-
ard terms; see Figure A3.3.

Figure A3.3 The neighborhood of a point P at which a
Laplace function is to be evaluated.

To form the Laplacian of some single-valued function
f(r,q) at point P , we need the gradients of f along two or-
thogonal directions through P. The directions used are the
radius and tangent through P. The radial gradient is f/r and
its variation with r is 2f/r2. Let the tangential coordinate
direction be s; along s, we compare the gradients at

points X and Y in diagram B.

The new term arises at point P 2. Consider first the mag-
nitude of sr at point P : we wish to compare this with the
normal-stress components on planes h, j and k in diagram
A3.3C. For a single-valued scalar, distinguishing plane j

from plane h makes no difference, but with a stress com-
ponent such as sr there is a difference, namely ; here the
variable a is used for change of orientation at a point, as
opposed to q where dq involves change of position as well
as orientation.

From conservation of momentum we have so that for sr,
the gradient at X becomes

Also numerically, though not geometrically, da = dq; hence
the extra term reduces to 2t/ r and generates the extra term

(-2/r2).(t/q) in the Laplacian function.

The extra term for sy is precisely similar. The extra term
for t arises in a similar manner but uses the fact that

t/a = sr-sq.

For a useful check, we recall that the pair of values (m=2,
n=2) in equations [6a,b,c] specify a homogeneous stress
field, for which the three left-hand sides of equation-set [5]
are zero by definition; when m = n = 2, the three right-hand
sides do indeed vanish as needed.

E. Supplement 2: diffusion and shear
stress

At equation [2b], the linear strain rate associated with sx is
composed of two parts, the viscous and diffusive contri-
butions. But the expression of geometrical continuity [4]
involves not only linear strain rates but also the shear strain
rate g. In a non-diffusing material g = t / N but again, ad-
mitting diffusion creates an extra term; the extra term, , is
established as follows.

Let a small rectangular element carry stresses sx, sy and t
as in Figure A3.4A; then the stress state can be described
as a superposition of the two stress states shown in diagram
B; here in magnitude the normal stress S equals the original
shear stress t. Following the pattern of equation-set [1], we
assume that the pair (S, -S) drives linear strain rates and .
These generate a shear strain rate in the element in diagram
A with magnitude and because S and t are numerically
equal, the shear strain rate is also

A fuller discussion of this topic is given in Bayly and Min-
kel (in press), as Appendix 2 of that work.
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Figure A3.4 A general state of stress and an equivalent pair
of pure-shear states.

F. Supplement 3: tensor expressions

To express the preceding ideas in a more comprehensive
form, one needs to write the underlying constitutive rela-
tion thus:

in which C could have 729 components (a sixth-rank ten-
sor). But in an isotropic material, C has a non-zero com-
ponent only when i= l, j=m and k=n, so the relation can be
rewritten

(no summation)

with 27 non-zero components in C. With conservation of
volume,

(summing over i) and if the material properties C are the
same at every point,

The two coefficients that were noted in the Discussion sec-
tion can be used again; thus when j = k = i, C = J but when
j = k i, C = K as in equation [12]. The ideas in Supplement
2 suggest further that when j k i, C = K again but that when
either j or k = i (not both), C takes a third value designated
H.

The viscous part of the strain rate is simpler:

where N is of fourth rank. Again in simple materials, N has
a non-zero component only when l = j and m = k. If one
wished in a corresponding way to write:

M would have 81 components, but only 9 non-zero, any
one term being of the form

and the triplets being JKK

HHK

HKH

HHK

KJK

KHH

HKH

KHH

KKJ .

In this approach, M bears some resemblance to N but in
fact remains fundamentally different because M is not
formed purely from material properties, it contains the sec-
ond-derivative operators.
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