
 

Appendix A 
Numerical modelling of dynamic recrystallization using Elle: Description of the 
model

A1 General approach

The modelling system Elle is designed to model the two-dimensional evolution of a micro-
structure that is a result of several concurrent micro-processes. Numerical modelling of several
concurrent processes results in a nonlinear problem. Complex algorithms and differential equa-
tions would have to be employed if the different equations which each describe the microstruc-
tural change according to one individual process should be solved simultaneously. So far, such
algorithms are largely lacking. 

Another approach is taken with Elle. It is assumed that a fabric is a result of microstruc-
tural changes due to process a, b, c, …, n, and that the fabric development can be simulated by
the sum of the microstructural changes of each of the individual processes according to the
general relationship 

δf(a, b,..., c) = δf(a) + δf(b) + ... + δf(c) (Eq. A1)

Equation A1 is only given if each process can be discretized in space and time. In Elle Eq. A1
is valid as processes operate at a very small scale and only for a small time increment. 

This approach which describes the nonlinearity of the problem by discretization of the
problem into distinct, linear and small segments in space, time and process, may lead to some
inaccuracy of results. Nevertheless, right now, there is no other numerical model available that
simulates the different simultaneously active processes needed for simulations of dynamic
recrystallization. 

A2 General description of modelling environment used

The modelling system Elle (Evans et al., 2000; Jessell et al., 2001) is based on a data structure
that describes a polycrystalline material using a two-dimensional network of nodes and con-
necting boundaries at the grain scale (Fig. A2). The network of nodes and boundaries forms a
square unit cell with periodic boundaries. Individual nodes possess attributes of position and
topology and may have additional attributes such as chemistry and stress state. The polygonal
domains defined by these nodes and their connecting boundaries may possess attributes such as
mineralogy, viscosity, strain, stress, dislocation density, age and lattice orientation. Each poly-
gon has an attribute which specifies if the polygon is a true grain or if it is part of a larger grain;
hence a subgrain. The specific distinction between grain and subgrain will be described in
detail in section A3.5. Data on the geometry of the structure and values of nodes and polygons
are stored in an Elle data file. To simulate the progress of a process, distinct process algorithms
can interact with this data structure (a) by using it to determine the local values of driving
forces, (b) by repositioning, creation and removal of nodes, (c) by reconnecting boundary seg-
ments, and (d) by altering attributes.  A central shell program controls the evolution of extrinsic
variables, such as temperature, and determines which micro-processes will be involved by con-
trolling the order and rate of execution of individual process algorithms (Fig. A3a). 
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Figure A2 Representation of the 2-dimensional

finite element map of a grain aggregate. Each

polygon domain (grain; polygon 1, 2, 6, 7) can

be subdivided into a number of polygonal sub-

domains (subgrains; polygon 3, 4, 5), each of

which in turn has a number of properties as-

signed to them, such as crystal lattice orienta-

tion. All polygons can be if desirec triangulated

to smaller elements using a Delaunay triangu-

lation routine. This triangulation is, in contrast

to the polygons, nodes and boundary segments,

not permanent aud can be used temporarily e.g.

for the subgrain formation routine

(ELLE_SPLIT; see text). Triangulation ele-

ments may also have individual properties, in-

cluding the stress and strain state during

deformation, and/or trace element concentra-

tion..
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Figure A3 (a) General schematic flow diagram of the Elle modelling system. (b) Flow diagram of the dynamic

recrystallization model. Processes given in the white boxes are those which have no true driving force (e.g. calcu-

lation of viscosity), while processes (top of box) and driving forces (bottom of boxes) are depicted in grey boxes.

In the model plane strain deformation of a viscous material, crystallographic rotation, forma-
tion of subgrains, recrystallization by nucleation, rotational recrystallization, grain boundary
migration and recovery is simulated (Fig. A3b). 
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To implement real world values in the model and to translate the calculated numerical
values to real world values several scaling factors are needed. Scaling factors which need to be
specified are the time (tscale), length (lscale), dislocation density (ρ’scale) and the stress (τscale). To

specify the spatial resolution of the node-boundary mesh a minimum and maximum node sep-
aration and a so called SwitchDistance has to be chosen which control the computational mini-
mum and maximum separation of nodes and minimum distance for adjacent triple nodes,
respectively (Fig. A4). 

Routines that simulate individual processes are described below. In these routine
descriptions there is first a section on the general background of the microstructural process
and a second section on how the routine works in the Elle. Routine names are written in CAPI-
TAL LETTERS, functions in bold and variables specific to the Elle model in italics. In Tab. A1
used symbols are listed (end of this file). 

A3 Description of individual processes 

A3.1 Viscous deformation (BASIL)

Viscous deformation is modelled by the program BASIL (Barr and Houseman, 1992; Barr and
Houseman, 1996), which uses a finite element method to calculate stress and strain in linear
and non-linear incompressible viscous, non-elastic materials, up to strains of the order of
100%. The calculations describe viscous Earth materials that undergo irreversible large-strain
deformation under the influence of body forces and surface tractions. The program permits a
spatially variable Newtonian or non-Newtonian viscosity in a 2-D geometry with traction and/
or velocity boundary conditions. The 2-D deformation field represents either plane strain
deformation, or it permits a specified distribution of normal stress in the third direction. In Elle
plane stress calculations are used, which result in a special case of a thin viscous sheet formu-
lation. The observation surface corresponds to the xy-plane of a sheared rock (Fig. A5). The
type of plane strain deformation of the unit cell in terms of the kinematic vorticity number Wn

(Means et al., 1980) and boundary conditions are defined by the user. The program can either
simulate the movement of two pistons at top and bottom of the model or movement according
to a set of velocity vectors at all points of the cell boundaries. To model deformation with pis-
tons, the displacement of the 4 corners of the cell per time step are defined by the user. Other-
wise the minimum and maximum values of the finite element node velocity components are
defined. The Elle microstructure will be distorted into a parallelogram during deformation. The
square unit cell can be regained by repositioning nodes that are outside the unit cell. To be able
to do this two prerequisites have to be met: (a) the mesh of nodes and node-to-node-boundaries
must be a unit cell structure with periodic boundaries (i.e. it wraps around in the x- and y-

triple nodes
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d Figure A4 Schematic illustration of a Neigh-

bourSwitch; here a so-called T1-event (Weaire

& Rivier, 1984). If a node is a triple junction
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direction) and (b) the simulated deformation must have been simple shear. To visualize and to
check if the values calculated by BASIL are reasonable a display program (SYBIL) is provided

(Barr and Houseman, 1996). SYBIL reads the solution files, and enables the user to plot
selected quantities in the form of contour plots of strain, stress or displacement quantities,
arrow plots of vectors of principal stresses, mesh plots or other derived quantities.

This deformation routine has been shown to be valid for modelling viscous deformation
of linear and non-linear viscous materials (Barr and Housemann, 1992; Barr and Housemann,
1996; Bons et al., 1997)

A3.2 Lattice rotation and accumulation of dislocations (ELLE_TBH)

One of the basic deformation mechanisms in most crystals is crystallographic slip, which
involves the movement of dislocations in certain planes and directions in each crystal which
gives rise to the rotation of the crystal during deformation (e.g. Weiss and Wenk, 1985 and ref-
erences therein; Law, 1990). For a given crystal structure there are well-defined combinations
of planes and directions in which slip occurs. For example, in the case of quartz, slip can occur

on the {001} plane (i.e. the basal plane) and in the <100> directions (i.e. parallel to the a-axes).
(e.g. Hobbs, 1985 and references therein), but also in several other direction on different
planes. 

The occurrence of crystallographic slip during plastic deformation gives rise to two
phenomena. One phenomenon that occurs is the rotation of the crystal lattice during deforma-
tion (Taylor, 1938; Bishop and Hill, 1951a, 1951b; Lister and Paterson, 1979). The crystal rota-
tion is required for accommodating an arbitrary deformation because deformation by slip is
possible only along a small number of slip systems. The other phenomenon is the increase in
dislocation density during deformation due to the built up of tangles (locks) within the crystal.
These tangles arrest further movement of dislocations. Because the resistance to dislocation
movement increases in the presence of the locks, the crystal requires additional stress in the
slip system to move further dislocations, and the crystal is said to ”work-harden” (Kocks et al.,
1975; Kocks, 1976; Mecking and Kocks, 1981; Barber, 1985). Entanglement of dislocations is
one of the mechanisms by which the deformation energy is stored within the crystal. The
microstructure of the work-hardened material consists of a large number of cells, or subgrains,
whose boundaries are essentially composed of a dense wall of dislocations (see section A3.3). 

y

zx

Figure A5 Schematic diagram of sheared rock,

orientation of x, y, z axis and observation sur-

face (xy-plane) in numerical simulations.
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ELLE_TBH consists of two parts. The first part is the calculation of the crystal lattice
rotation and the associated work (Taylor Bishop Hill calculations; Taylor, 1938; Bishop and
Hill, 1951a, 1951b; Lister and Paterson, 1979) and the second part the calculation of the accu-
mulation of dislocations. For the Taylor Bishop Hill calculations several assumptions are
made. (a) Dislocation glide is the only deformation mechanism and each grain (smallest order
polygons) deforms homogeneously to same strain. This is an approximation to nature where
crystals deform heterogeneously (e.g. mica deform by sliding on its basal planes). (b) Each
grain has at least 5 independent slip systems (known as the von Mises criterion (von Mises,

1928)). (c) The activity on any one slip system results in a small increment of simple shear par-
allel to the slip plane in the direction of the slip vector. Until the entire strain increment can be
achieve for a grain, no deformation takes place at all, so the stress gradually increases until the
critical resolved shear stress (CRSS) threshold is surpassed on just enough slip systems to
allow the specific strain to take place (Lister et al., 1978; Jessell and Lister, 1990). Once this
state is achieved, the work term can be calculated as the products of the small strains achieved
by each slip system and the imposed stress. (d) No lattice reorientation due to rigid body rota-
tion is taken into account and strain is assumed to be plane strain. 

The Taylor Bishop Hill routine was developed by Lister et al. (1978), further developed
by Jessell and Lister (1990), and later modified to match the needs of the Elle project by Mark
Jessell. Inputs for this process are crystal symmetry and slip system definition with CRSS val-
ues for a given mineral species. According to the CRSS values and the stress tensors provided
by BASIL, the new crystal orientation and the work necessary to achieve this crystallographic
lattice rotation are calculated. 

For the second part of ELLE_TBH the following considerations have to be taken into
account. A general positive correlation of dislocation density and differential stress is predicted
from theory (Kohlstedt and Weathers, 1980) and observed in experiments (e.g. Durham et al.,
1977; Beemann and Kohlstedt, 1988; De Bresser, 1996). At steady state the relationship
between dislocation density and stress is given by

ρ = K(σ/|b|)2 (Eq. A2)

(Argon, 1970), where ρ is the density of mobile dislocations, K a constant, σ stress and |b| the
magnitude of the Burgers vector of the dislocation.

In ELLE_TBH, the change in dislocation density is assumed to be linearly proportional
to the amount of work per unit area. 
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The new dislocation density (ρ’new) of a polygon undergoing work is calculated accord-

ing to the following equation

ρ’(new) = a • ρ’(initial) + b •  ework (Eq. A3)

where a and b are constants. Additionally, a+b =1.1 to ensure an increase of dislocations with
progressive deformation (Fig. A6). ρ’(initial) corresponds to the ”initial” dislocation density of
a polygon given in the Elle data file before the onset of ELLE_TBH and ework the calculated
work for deformation of the grain according to the Taylor Bishop Hill code (for more details
see Lister et al., 1978; Jessell and Lister, 1990). The calculated ρ’(new) of the relevant polygon
is written to the new Elle data file. If one simply uses a direct function of the ework without any
reference the previous dislocation density, a strong oscillation of dislocation density occurs.
Grains with high dislocation density (i.e. high viscosity; section A3.7) in one time step will do
little work and hence will have low dislocations densities (i.e. viscosities) in the next time step.

The part of the routine that is used to calculated the crystallographic rotation and work
term have been shown to be relevant to rock deformation by Lister et al. (1978) and Jessell and
Lister (1990). 

A3.3 Formation of subgrains (ELLE_SPLIT)

During deformation dislocations are generated and stored in a crystal. Dislocations do not
occur in thermodynamic equilibrium and tend to move to lower the energy of the system (Bar-
ber, 1985 and references therein; Gottstein and Svindlerman, 1999 and references therein).
One way to minimize the free energy of dislocations is the rearrangement of dislocations in
low energy dislocation structures such as planar dislocation arrays (tilt walls, cell walls, sub-
grain walls) (e.g. Gottstein and Mecking, 1985; Kocks, 1985). Such arrays show dislocations
of one sign at one side of a wall and of the other sign at the other side (Gottstein and Mecking,
1985 and references therein). First, the cell walls sharpen, until they become subgrain bound-
aries, then the substructure coarsens (Sandström, 1977; Gottstein and Mecking, 1985; Kocks,
1985; Gottstein and Svindermann, 1999, and references therein). An increase in the number of
dislocations results in an increase in internal stresses. These stresses inside the developing cells
provide the local driving force for rearrangement of dislocations in tilt walls (Kocks, 1985).
Therefore, it is assumed that the higher the dislocation density the higher the possibility that
dislocations arrange themselves in such tilt walls (Barber, 1985; Kocks, 1985). At the first for-
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mation of subgrain boundaries the new subgrains have a similar dislocation density because
the original grain as the dislocations are only rearranged but not annealed (e.g. Kocks, 1976).
The size of the new subgrains size is characteristic for a mineral species (e.g. Twiss, 1977;
Kohlstedt and Weathers, 1980; Christie et al., 1980; Kronenberg and Tullis, 1984).

The subgrain formation routine ELLE_SPLIT performs ”splitting” i.e. subdivision of a
polygon into several new polygons. Accordingly, it models the discontinuous development of
subgrain boundaries. Although such a model is a simplification of the mechanism of subgrain
boundary formation in nature, cell walls evolve to coarse subgrain walls that can be recognized
macroscopically only as subgrain but not cell walls. The driving force F(ρ) for subgrain forma-
tion is the total strain energy per unit area in the used two dimensional model. In the used node
network this is the energy per node. F(ρ) is calculated according to

F(ρ) = ρ’ • ρenergy • ρ’scale (Eq. A4)

where ρ’ is the dislocation density, ρenergy the energy of dislocations and ρ’scale the dislocation

density scaling factor. If F(ρ)  > Thsplit (threshold value for splitting of a polygon), the grain has

a probability to ”split” into subgrains. The probability for "splitting" increases with increasing
F(ρ) and is determined according to the probability function Paction. 

test_threshold=action_threshold/ F(ρ);
    /* for high values of F(ρ) the test_threshold is small and vice versa */

test=drand48();  
    /* randomly picked number between 0 and 1 */

if (test>test_threshold) CallForAction (Eq. A5)

where action_threshold (e.g. Thsplit) is the energy threshold value for a certain action (e.g. split-

ting) defined by the user. The function drand48() belongs to a family of functions that generate
pseudorandom numbers using the linear congruential algorithm and 48-bit integer arithmetic.
The drand48( ) function returns a random non-negative, double-precision, floating-point value
between 0 and 1.0. CallForAction is a function that calls a certain action such as the splitting
of a polygon. This probability function is also used for the probability for recrystallization by
nucleation (section A3.4). 

The division of a ”parent” polygon into several smaller polygons (i.e. subgrains) is
done by successive splitting of one ”parent” polygon into two smaller ”daughter” polygons.
The boundary between the new ”daughter” polygons is found in the following way. First, the
"parent" polygon is triangulated according to the Delaunay triangulation routine (Shewchuk,
1996). A direction vector of a preferred direction of splitting O is specified either according to
a certain probability to be in a specified orientation relative to the crystallographic axes of the
”parent” polygon or by a random number generator. The direction of the different triangulation
legs joined to the starting node at the "parent" boundary is compared with the given direction
vector. The triangulation leg that has the smallest angle with O and forms an angle above 45
degrees with the ”parent” polygon boundary is chosen for the first part of the splitting-walk
(Fig. A7). The next triangulation leg used for the splitting-walk (new subgrain boundary) is
again chosen according to its angle with the direction vector. Once the splitting-walk arrives at
the boundary of the "parent" polygon the size of the resultant two "daughters" is calculated. If
one of the resultant polygons is smaller than the given minimum area (MinArea) the walk is
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rejected and a new splitting-walk is attempted starting from another boundary node. If the area
of a ”daughter” polygons is above the maximum polgyon area (MaxArea) it is split again into
another set of ”granddaughter” polygons. The range of subgrain size (MinArea < subgrain size
< MaxArea) is defined by the user and is assumed to be characteristic for a mineral species.
Most of the attributes of the ”parent” (e.g. mineral species, dislocation density) are passed on
to the ”daughters”. Additionally, the two daughters are marked as subgrains (split attribute = 1)
and are given the same grain number attribute which specifies them as subgrains of a larger
grain (see Fig. A2). 

A3.4 Recrystallization by nucleation (ELLE_NUCLXX)

In many natural examples e.g. albite, magnesium, quartz (Knipe and White, 1979; Ion et al,
1982; Fitz Gerald et al., 1983; Tullis and Yund, 1985, Urai et al. 1986; Drury and Urai, 1990)
subgrains show distinct discontinuous stages where the dislocation structure in a subgrain is
cleared out producing relatively strain- and dislocation-free grains (regime D in Fig. A1). In
contrast to geology, in metallugy this process is commonly referred to as dynamic recrystalli-
zation (Hardwick et al., 1961; Stüwe, 1965; Nicholis and McCormick, 1970; Gottstein and
Mecking, 1985). A subgrain that has a high dislocation density is characterized by a high num-
ber of even smaller subgrains (cells) to very small scales (µm) which themselves have low
internal dislocation density values (Kocks, 1985). One of these minute cells can act as a new
nucleus, that will grow rapidly at the cost of its neighbouring cells (Fig. A8a; Gottstein and
Mecking, 1985; Gottstein and Svindlerman, 1999, and references therein). Three prerequisites
have to be fulfilled to allow such a nucleation: (1) the total free energy must decrease during
expansion of the nucleus and for this a critical nucleus size rc has to be exceeded, (2) there

must be an instability of the microstructure i.e. differences in dislocation density, and (3) at
least at one side of the nucleus the boundary must be a mobile grain boundary i.e. a high angle
boundary (for more details see section A3.5) (Gottstein and Mecking, 1985). The possibility
that a strain free nucleus satisfies the prerequisites as stated above increases with increasing
dislocation density (Kocks, 1985). The new grain exhibits a low dislocation density because
during nucleation and growth of the nucleus dislocations are swept into the moving tilt wall. 
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Figure A8 Schematic illustration of the mechanism recrystallization by nucleation. (a) recrystallization nucleus

with growth potential in a deformed structure (modified after Gottstein and Svindlermann, 1999). A nucleus can

only grow if the total free energy decreases during expansion of the nucleus. For this a critical nucleus size rc has

to be exceeded (Gottstein and Svindlermann, 1999). (b) Schematic illustration of recrystallization by nucleation

as simulated in the Elle model.

The mobility of dislocations, which is directly related to the growth rate of a nucleus is temper-
ature dependent according to the general form 

    (Eq. A6)

where vm is the mean velocity of a dislocation segment, ∆G the Gibbs free energy of activation

for the cutting or by-passing of an obstacle, β is a dimensionless, material dependent constant,
|b| the magnitude of the Burgers vector and κ the frequency of obstacle jumps (Frost & Ashby,
1983). According to Eq. A6 the boundaries of a new nucleus will sweep over its neighbouring
grains at higher speed at higher temperature than at low temperature. 
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In ELLE_NUCLXX, the critical threshold value RX  for the necessary energy at which

a grain can nucleate is material and temperature dependent. According to Eq. A6 the possibility
of a nucleus to successfully nucleate within a time step is higher at higher temperatures. In
accordance with this relationship, the RX at a specific temperature is related to RXnucl. RXnucl is

the base nucleation threshold value specific to a mineral species. RX is calculated in the follow-
ing way:

RX = (RXnucl) • c/(T+c) (Eq. A7)

where c is a constant and T the temperature. This formula ensures the general trend of decreas-
ing RX with increasing T. If F(ρ) (Eq. A4) > RX  there is a certain probability (calculated

according to Paction (Eq. A5)) that a nucleus which fulfils the three requirements for recrystalli-

zation by nucleation is present in a polygon (see above). The dislocation density of a newly
nucleated grain is set to a specified low dislocation density value (ρ’nucl) and a new randomly

picked crystallographic orientation. The randomly picked orientation must satisfy the condi-
tion that the boundaries at all sides of the grain of the recrystallized grains are mobile, high
angle boundaries. A new nucleus will only be able to grow if at least some of its boundaries are
high angle boundaries (Fig. A8b). The position of subgrain boundaries does not change in this
routine due to computational limitations. Therefore, all subgrain boundaries must be high
angle boundaries to allow the ”successful” nucleation of a grain. 

A3.5 Rotational recrystallization (ELLE_ROTXX)

Low angle boundaries, which are defined by a tilt wall, develop into high angle boundaries by

progressive misorientation of stationary subgrain boundaries. Such high angle boundaries have
a different structure than tilt walls. They are characterized by the independence of its structure
from domains on either side of it and overlapping dislocation cores (Gottstein and Shvindler-

man, 1999, and references therein). In geology, this process of progressive misorientation is
referred to as rotational recrystallization (Guillopé and Poirier, 1979; Poirier, 1985). The tran-
sition from a low to a high angle grain boundary structure is thought to occur at a critical angle
of misorientation δ that is specific to a mineral phase (Fig. A9; e.g. Gottstein and Mecking,
1985; Drury and Urai 1990). 

ELLE_ROTXX distinguishes between subgrains and grains. If all sides of a polygon
are classified as high angle boundaries, the polygon is recognized as a grain and not as a sub-
grain. The value of the critical angle between a high and low angle boundary (MisorientAngle)
is specific to the mineral phase. Only the grain/subgrain attribute is changed (cf. section A2).
No physical properties of the polygon are affected by this routine. The calculation of the mis-
orientation is performed according to the procedure described by Randle (1995) and Lloyd et
al. (1992) as this procedure is commonly used in grain boundary studies (e.g. Trimby et al.,
1998; Fliervoet and White, 1995; Fliervoet et al., 1999). 
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A3.6. Grain boundary migration (ELLE_GBM)

A positive driving force for grain boundary migration occurs if a grain boundary displacement
results in a decrease of the total free energy of the system. The driving force is a combination
of two separate forces. These are (a) the force resulting from the difference in stored, internal
energy i.e. strain energy and (b) the difference in chemical potential between adjacent grains. 

A deformed grain stores a certain amount of energy by the build-up of dislocations (e.g.
Frost and Ashby, 1983 and references therein; Kocks, 1985; Barber, 1985). The higher the dis-
location density the higher the stored energy according to

Estored = ρenergy • A • ρ (Eq. A8)

where ρenergy is the energy of dislocations, ρ dislocation density and A the area.

The difference of dislocation density between two adjacent grains is a driving force for
grain boundary migration. The grain boundary migrates towards the grain with the highest dis-
location density to reduce the total local energy state of the system (Fig. A10). The area swept
is devoid of dislocations as dislocations move into the moving grain boundary (Barber, 1985;
Kocks, 1985).

The difference in chemical potential between grains occurs as a function of the surface
free energy. The difference in grain boundary curvature between grains of different sizes result
in a chemical potential gradients across the interface grain boundary according to the Gibbs-
Thompson equation (e.g. Lewis and Randall, 1961): 

(Eq. A9)

where is ε the surface energy of the phase. The equation relates the chemical potential of com-
ponent i at the surface of a spherical phase, radius r and molar volume V to that of a planar sur-
face at the distance r form the centre of the crystal. A geometric factor ζ is applied to account
in differences in grain shape. 
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Additionally, the surface energy has been shown to be anisotropic. Surface energy
anisotropies are a function of the (a) the relative crystallographic orientation of the boundary
i.e. tilt angle between two neighbouring grains (anisotropy AXX) and (b) crystallographic orien-

tation of the boundary (anisotropy Aα) (e.g. Urai et al. 1986; Grest et al., 1985; Gottstein and

Shvindlerman, 1999). 
In ELLE_GBM the simulation of grain boundary migration is performed by successive

movement of each individual node present in the node network. The movement of an individ-
ual node consists of two components: (a) the node movement routine and (b) the calculation of
the change in energy due to the movement of a node. 

Figure A11 Schematic diagram which illustrates the numerical procedure performed to achieve movement of one

node according to the maximum reduction of energy. (a) Initial node-boundary-polygon configuration with differ-

ent dislocation densities in different polygons. (b) Illustration of the randomly chosen four tryout directions; (c)

resultant movement.
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ing grain boundary migration due to ener-

gy differences derived from the energy of

dislocations. The grain with low disloca-

tion density migrates in the grain with high

dislocation density to lower the total free

energy of the system (modified after Pass-

chier and Trouw , Fig. A17a).
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In ELLE_GBM a small displacement of a node changes the total energy state by ∆Etrial.

A small displacement vector ptrial of length Dtrial, in a random direction is chosen and ∆Etrial is

calculated. The length Dtrial is calculated according to a defined fraction d (usually 0.01) of the

SwitchDistance between two nodes

Dtrial = SwitchDistance • d (Eq. A10)

The calculation of ∆Etrial is repeated for another three displacements, each time rotating the

trial displacement vector ptrial by 90 degrees. The displacement vector ptrial along which a node

displacement results in the largest reduction of the local energy state is taken as the movement
vector for the actual migration of the node concerned (Fig. A11). Once this movement vector p
has been chosen the amount of true displacement D of the node is calculated and the node
moved by this displacement along p.

To choose the relevant ptrial the change in energy due to the displacement Dtrial in the

ptrial direction must be calculated. In ELLE_GBM the calculation of the change in energy is

divided in two main components. These are the change strain energy stored in adjacent poly-
gons (∆Eρ) and the change in surface energy (∆Eφ). These values are calculated according to

the displacement of the node by Dtrial. 

To calculated the trial change in energy due to dislocation density (∆Eρ−trial) first the

”real world” area (initialArea) for each polygon adjacent to a double or triple node under con-
sideration is calculated according to  

initialArea = Elle_area • lscale
2 (Eq. A11)

where Elle_area is the area stored in the Elle file. The dislocation density ρ’(initial) stored in
the Elle file of each polygon is retrieved. It is assumed that the dislocation density within one
polygon is homogeneous, therefore the initial energy due to dislocations Eρ(initial) of each

polygon can be calculated according to

Eρ(initial)  = ρenergy • initialArea • ρ’(initial)  • ρscale  (Eq. A12)

where ρenergy is the energy of dislocations, ρ’(initial)  the dislocation density stored in the Elle

data file and ρscale the dislocation density scaling factor. Then the node position is changed

according to Dtrial and ptrial. This new node position results in a change in the areas of the poly-

gons concerned. If the new area (newArea) of the polygon is smaller than the initialArea no
change in dislocation density and therefore no energy difference will be present. If newArea >
initialArea the dislocation density of the polygon is assumed to change according to the fol-
lowing equation.

ρ’(new)  = (initialArea/newArea) • ρ’(initial) (Eq. A13)
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This change in dislocation density with increasing area, results in an decrease of the disloca-
tion density of a ”growing” grain. This calculation is valid under the assumption that the swept
area is dislocation free. This is reasonable, because dislocations that were present in the swept
area before movement of the node accumulate in the grain boundary (Kocks, 1985). For a
”growing” polygon where newArea > initialArea the new energy Eρ(new) is calculated accord-

ing to 

Eρ(new) = ρenergy • newArea • ρ’ • ρscale (Eq. A14)

The difference in stored energy ∆Eρ(polygon) of a ”growing” polygon is calculated by

∆Eρ(polygon) = Eρ(initial)  - Eρ(new) (Eq. A15)

 The total change in ∆Eρ−trial is the sum of the ∆Eρ(polygon) of the polygons involved (Note:

for a polygon where newArea  < initialArea ∆Eρ(polygon) = 0).

∆Eρ =ΣEρ(polgon) (Eq. A16)

In ELLE_GBM the second driving force considered is the change in surface energy due
to the movement of a node. The calculation of the surface energy change (∆Eφ) has 3 compo-

nents. These are (a) surface energy due to length of the boundary segments involved Elength, (b)

anisotropy AXX of this surface energy due to relative crystallographic orientation of two adja-

cent grains and (c) anisotropy Aα  of the surface energy due to orientation of the boundary with

respect to its crystallographic orientation (Bons et al., in press). In two dimensions Elength is at

a minimum if boundaries are straight and intersections angle are 120°. In Elength calculations,

the initial and end length of the boundary segments that change their length due to the move-
ment of a node is calculated. Assuming an isotropic surface energy, the energy state is the
length of the segments multiplied by the surface energy. 

For the example, of a double-node in Fig. A12 with bounding two segments of lengths
l1 and l2, the energy Elength is generally given by 

Elength = Γ • (l1+l2) (Eq. A17)

where Γ is the surface energy and l1, l2 the lengths of the two segments next to the node. The

movement over vector Dtrial results in a change in segment lengths l1 and l2 to new lengths (l’1,

l’2). 

l1

l'1
l'2

l2 Figure A12 Schematic diagram illustrating the

parameters used for the calculation of surface

energy.
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In ELLE_GBM the initial and new segment lengths Elength for the boundaries concerned

is calculated. The change in energy (∆Elength) is the difference between the two. This part of the

routine is based on the model of P. D. Bons (1993) and Jessell et al. (2001). And it has been
shown to be a valid for grain boundary energy driven grain boundary migration (Bons, 1993;
Jessell et al., 2001; Bons et al., in press). The anisotropy of surface energy of a grain boundary
is low if the angle of crystallographic orientation between two adjacent grains is low and high
at high angles (Fig. A13). Read and Shockley (1950) showed that for a symmetrical tilt bound-
ary with tilt angle ϕ, the surface energy σb per unit area is in a general form

σb =  ϕ (K • ln ϕ) (Eq. A18)

where K is a material constant. In ELLE_GBM, the relationship between the isotropic surface
energy (Γi) and anisotropic surface energy (Γa) due to the angular relationship the crystallo-

graphic misorientation of the c-axis between two adjacent crystals A and B (tilt angle Π) on
either side of the grain boundary is assumed to follow the general form

Γa = Γi  •  xx_factor(Π) (Eq. A19)

where xx_factor ranges between 0 and 1 and is a function of tilt angle Π . The values of
xx_factor are derived from a file. In this file the xx_factor values for specific tilt angle Π ranges
are listed. This part of ELLE_GBM is an implementation of an existing code written by P. D.
Bons and M. W. Jessell. 

In ELLE_GBM the anisotropy of the surface energy Aα relates the angular relationship

between the orientation of the grain boundary and crystal lattices. Aα is a function of the five

angles α1, α2, α3, α4, α5 which define the orientation of a boundary and the lattices of the adja-

cent crystals on either side of the boundary: 

Figure A13 Surface energy  Γa  of grain

boundaries with a specific tilt angle be-

tween two adjacent grains (ϕ). Open dots

and squares signify measurements of spec-

imen of lead and tin respectively (modified

after Gottstein and Svindlerman, 1999).
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Aα = F(α1, α2, α3, α4, α5) (Eq. A20)

Different functions which describe Aα can be chosen depending on the character of anisotropy

to be modelled. Details of the assumption for different surface energy anisotropies and possible
functions to be chosen from are described in detail in Bons et al. (in press). Again, this part of
ELLE_GBM was written by P. D. Bons and its applicability to the microstructural develop-
ment of metals and crystalline analogue materials has been shown in Bons et al. (in press).

The following equation is used to draw together the effect of the three components
Elength, AXX and Aα that influence the surface energy of a boundary segment, 

Eφ  = l  • xx_factor   • Γ   •  AXX   • lscale (Eq. A21)

where l is the length of boundary and Γ a predefined surface energy. The change in energy
(∆Eφ−trial) is the difference between the energies Eφ  calculated for the initial node position and

its position after Dtrial along vector ptrial. 

In ELLE_GBM the total energy change ∆Etrial which would arise from node movement

with Dtrial along ptrial is calculated according to

∆Etrial = ∆Eφ−trial + ∆Eρ-trial (Eq. A22)

where ∆Eφ  is calculated according to Eq. A21 and ∆Eρ according to Eq. A16.

∆Etrial is calculated for each of the four trial node positions. Vector p for which ∆Etrial is

the highest is taken as the valid vector for the true movement of the node. Once p is chosen the
true displacement D in direction of the chosen direction vector p can be calculated according to

D  = vnode • tscale (Eq. A23)

whereby vnode is the velocity of node movement and tscale the time scaling factor. The rate at

which grain boundary migration i.e. the velocity of the boundary movement occurs depends on
the mobility of the boundary and the value of the driving force according to the general rela-
tionship

v ∝  M • F (Eq. A24)

(Frost and Ashby, 1983 and references therein) where v is the velocity, M the mobility and F
the driving force for grain boundary migration. 

In ELLE_GBM, this means 

vnode  = GBMob • ∆E (Eq. A25)
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where ∆E is the calculated change in energy due to the Dtrial along the chosen vector p and

GBMob the mobility. Once the GBMob is known the velocity of the node vnode can be calcu-

lated. 
To calculate the value of GBMob the following considerations have to be taken into

account. In general, the grain boundary mobility M is mainly function of temperature and
material (Fig. A14; Frost and Ashby, 1983; Gottstein and Shvindlermann, 1999 and references
therein). Additionally, the amount of impurities (Olgaard and Evans, 1986; Randle et al., 1986)
are important for the effective grain boundary mobility. Assuming no impurities the relation-
ship of M to temperature follows a general Arrhenius equation of the form

M = M0• e
(-H/(B•T)) (Eq. A26)

(e.g. Frost and Ashby, 1983; Gottstein and Svindlerman, 1999, and references therein) where
H is the activation energy, B is the Boltzmann constant, and M0 a ‘base mobility’ specific to a

material. 
In ELLE_GBM, the grain boundary mobility is calculated according to

GBMob = GBMob0 • e(-QGBM/(B • t)) (Eq. A27)

where GBMob is the grain boundary mobility, QGBM is the activation energy, B is the boltz-

mann constant and GBMob0 a “base mobility“ specific to a material. The direct relationship of

grain boundary velocity, grain boundary mobility and driving force assumes no variations due

to impurities and drag effects. Additionally, it is assumed that the intensive variables pressure,
temperature and magnetic field show no gradients in the experiments. They can therefore be
neglected.

Now, the new position of the node can be calculated using v (calculated by Eq. A25 and
Eq. A27), D  (calculated by Eq. A23) and the chosen vector p.

In ELLE_GBM a number of assumptions and approximations are made and therefore
the relevance of such a calculation of the node movement had to be tested in several ways. The
validity the general mode of determination of the relevant movement direction (trial vectors

ptrial; Fig. A11) is discussed in Bons et al. (in press). 

Several tests were performed simulating the microstructural evolution of a fabric due to
grain boundary migration. ELLE_GBM was divided into two individual routines
(ELLE_DISLOC, ELLE_SURF). In ELLE_DISLOC exclusively the change in stored energy
due to dislocations is considered for the driving force calculation for grain boundary migration.

Figure A14 Dependence of the mobility on

material and temperature. Depicted is the

reduced mobility A for 40.5° <111> tilt

boundaries in differently pure Al: Al III, Al

IV and Al V have an impurity content of A6

ppm, 4.9 ppm and 7.7 ppm, respectively

(modified after Gottstein & Svindlermann
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In ELLE_SURF exclusively the change in surface energy due to the change in length (Elength)

and the anisotropy Axx of a grain boundary are considered. The change in microstructure of a

combination of ELLE_DISLOC and ELLE_SURF show very similar results as simulations
using ELLE_GBM which assumes Aα  = 1. In addition, results of several simulations with

identical parameters and initial microstructure, shown that simulations are reproducable.

A3.6. Recovery (ELLE_RECOVERY)

Deformed crystals tend to remove lattice defects that are not in thermodynamic equilibrium in
order to lower the energy of its system. In the metallurgical sense, recovery results in low
energy dislocation structures by either dislocation annihilation or locally rearrangement in cell
and subgrain walls. The amount of annihilation per unit area and time step depends on both
material and temperature (Hu, 1963; Kocks et al. 1975; Kocks, 1985; Gottstein and Shvindler-
man, 1999 and references therein). Recovery that results in the rearrangement of dislocations is
simulated by the subgrain formation routine (ELLE_SPLIT; section A3.3).

ELLE_RECOVERY exclusively simulates recovery that describes the time- and tem-
perature-dependent annihilation of non-geometrically necessary dislocations within a crystal.
In the routine the dislocation density of each grain or subgrain is reduced per time step accord-
ing to a recovery factor RF. First the temperature dependent RF is calculated according to: 

RF = e • RFbase + ((1-e) • RFbase • f/(T+f) (Eq. A28)

where RFbase is the base recovery factor specific to a mineral species, e a constant between 0

and 1 and f a constant. This formula is arbitrary. We know, though, that the recovery rate is a
function of the mineral species and some form of 1/T, therefore we regard the formula above as
a reasonable approximation of the process active in nature (Kocks, 1985). The new dislocation
density is then calculated according to 

ρ’(new)  = ρ’(initial) •  RF (Eq. A29)

This type of equation ensures a progressive decrease in dislocation density provided no new 
dislocations are generated (Fig. A15).

A3.7 Calculation of viscosity (ELLE_VISCOSITY) 

The rate at which crystals deform viscously depends on the applied stress and the viscosity of
the grain. 

Figure A15 Schematic graph illustrating

the decrease in dislocation density with

time. It is assumed that the only active pro-

cess that changes in dislocation density is

recovery.
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(Eq. A30)

The viscosity of a grain is largely a function of the mineral species, dislocation density of the
crystal, temperature and presence of a fluid phase. Fluid presence enhances dislocation glide
and climb by hydraulic weakening (Kronenberg & Tullis, 1984;, Tullis & Yund 1988, 1989;
Post et al., 1996).

Dislocations interact with each other, and since many dislocations must move distances
which are large compared to their spacing to achieve macroscopic flow, dislocation interactions
are of fundamental importance for plasticity and viscosity (e.g. Kocks 1976, 1985; Frost and
Ashby, 1983 and references therein) (see also A3.2). The general relationship between strain
rate and dislocation density assuming dislocation glide as the main deformation mechanism is
given by the Orowan’s equation 

 (Eq. A31) 

where |b| is the magnitude of the Burgers’ vector and v the average velocity determined almost

entirely by the time to overcome obstacles. The velocity of dislocations in a polycrystal is fre-

quently determined by the strength and denstiy of the dicrete obstacles it contains. If it is
assumed that the activation energy required to overcome the obstacle is the rate limiting factor
for the deformation of a material, which means that the obstacle is “strong“, the strain rate is
related to dislocation density and stress in the following manner.

 (Eq. A32)

(Frost and Ashby, 1983). Therefore, the viscosity is related to the dislocation density according
to the general relationship

η ∝  sqrt (ρ)  (Eq. A33)

This is in the accordance to the described "work-hardening” phenomenon (section A3.2;
Kocks, 1976; Kocks et al. 1975). The term work hardening describes an increased resistance to
dislocation movement with increasing dislocation density. Thus, a crystal requires additional

stress to move further dislocations. 

In ELLE_VISCOSITY (due to computational limitations) it is assumed that the mate-
rial is viscous, rather than plastic. The following viscosity calculation was used

η = (ηbase + Fluid_Factor • SQRT(ρ’)) (Eq. A34)
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where ηbase is the ”base” viscosity specific to a mineral species. This equation ensures the

dependence of viscosity (ηbase), dislocation density and the degree of hydraulic weakening i.e.

value of Fluid_Factor (Fig. A16). 

A4 Data storage, display, statistics and clean-up of computationally problematic mesh geome-
tries

A4.1 Data storage

At each time step an Elle data file is automatically stored. The data file gives a full description
of the geometry of the simulated microstructure. It also stores for each polygon the grain num-
ber it belongs to, its mineralogy, viscosity, dislocation density, crystallographic orientation
(Euler angles), strain attributes, age, the number of recrystallization cycles it was involved in
and if it is a subgrain or a not. Additionally, for each node the stress values are stored.

A4.2 Display of Elle data (SHOWELLE)

With the display program SHOWELLE the data stored in the Elle data file, such as the position
of nodes and connection boundaries, as well as polygon and the calculated boundary attribute
”angle of misorientation (see section A3.5) can be visualized in colour or in grey scale. 

A4.3 Statistics (ELLE_STATS)

A separate routine ELLE_STATS generates a statistics file to keep track of the microstructural
evolution of a microstructure for each time step. It analyses the data given in the data file and
writes results to a statistics file. The following data are stored: total number of polygons, poly-
gon number, polygon area, polygon mineral attribute, age, cycle of recrystallization, total num-
ber of grains, grain number, grain area, length of grain boundaries according to different angle
of misorientation categories, total grain boundary length. A grain is defined as the sum of poly-
gons, which are adjacent to each other and exhibit no high angle boundaries between each
other. The same procedure as used for the rotational recrystallization routine (section A3.5)
was used to calculated the angle of misorientation. A grain shape analysis (Panozzo, 1983,
1984) is performed using the algorithm written by P. D. Bons (Bons, 1993). This method
(Panozzo, 1983, 1984) assumes that the average grain shape preferred orientation (SPO) can be
described by an ellipse with an aspect ratio (Ra) and an orientation of the long axis of the

ellipse (α) using the orientation of the grain boundaries. Only grain boundaries that did not
touch the network boundaries were used for the calculation. Output of the analyses are the ratio
of long to short shape axis of the average fitted ellipsoid, maximum angle of long shape axis,
minimum angle of long shape axis and accuracy of shape related calculations.

Figure A16 Schematic graph illustrating

the general relationship between viscosity

and dislocation density as assumed in Elle

calculations. The fluid activity is assumed

to be constant.
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A4.4 Clean-up of computationally problematic mesh geometries (ELLE_CHECKANGLE)

ELLE_CHECKANGLE is a routine to "clean-up" topologically problematic mesh geometries.
BASIL has problems triangulating regions with very sharp angles or very small areas which
may develop. If either of these problems occurs, BASIL will usually run out of memory due to
the creation of many unnecessary small triangles which are used in BASIL. Therefore, a rou-
tine was developed to get rid of these sharp angles and very small areas (Fig. A17). The thresh-
old values at which this routine is applied are minimum angle MinAngle and the area of a
triangle with sides of the length of the minimum node separation (MinNodeSep).

Such a routine is justified as in natural examples in which very sharp angles between
grain boundaries are not observed and very small grains are rare. This is in accordance to ther-
modynamic instability of very small angles and very small grains according to Eq. A9. High
curvature, hence high radii, result in high driving forces to move the boundary towards the cen-
tre of curvature.

polygon 2

polygon 1

polygon 3

α2

polygon 2

boundary nodes

polygon 1

moving triple node

polygon 3

α1

a

b

Figure A17 Schematic diagram illustrating the effect

of the clean-up routine. (a) In the routine sharp angle

between two grain boundaries (α1) are recognized

and (b) one node is moved along one grain boundary.

The distance between the original node position and

the new node position is chosen in such a way that the

resultant enclosing angle α2 > MinAngle. The deci-

sion which node is moved along which boundary is

random if all polygons are polygons of the same min-

eral species. If one of the polygons (e.g. polygon 1)

has a different mineralogy than the other polygons

involved, node is moved along the boundary between

polygons of the same mineral species.
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Table A1 Used symbols
a constant in ELLE_TBH -
A area of grain m2

Elle_are
a

dimensionless area of polygon stored in Elle file -

MinAn-
gle

Minimum angle allowed in between boundary 
segments

¡

Misori-
entAngle

angle below which polygon boundaries are 
regarded as subgrain boundaries

¡

MinArea minimum area of new subgrain mm2

MaxArea maximum area of new subgrain mm2

ini-
tialArea

area of polygon before node movement m2

newArea area of polygon after node movement m2

A XX anisotropy of surface energy due to tilt angle 
between boundaries 

-

Aα
anisotropy of surface energy due to crystallo-
graphic orientation of boundary in ELLE_GBM

-

b constant in ELLE_TBH -
B Boltzmann constant JK-1

|b| magnitude of the Burgers  vector -
c constant in ELLE_NUCLXX -
CRSS critical resolved shear stress used in ELLE_TBH -
C constant of proportionality of a fractal set -
d factor used to calculated distance for trial dis-

placment
-

D fractal dimension -
D chosen displacement for node movement in 

ELLE_GBM
m

Dtrial trial displacement of node used in ELLE_GBM m
e constant in ELLE_RECOVERY -
ework work term in ELLE_TBH -
Estored strain energy stored in grain Jm-2

Eρ energy due to dislocation density in ELLE_GBM Jm-2

Eρ(poly-
gon)

energy of a polygon due to dislocation density in 
ELLE_GBM

Jm-2

Eρ-trial trial energy due to dislocation density in 
ELLE_GBM

Jm-2

Eφ overall surface energy in ELLE_GBM Jm-2

Etrial trial energy in ELLE_GBM Jm-2

Elength surface energy due to length of boundary in 
ELLE_GBM 

Jm-2

f constant in ELLE_RECOVERY -
F driving force Jm-3

Fluid_Fa
ctor

factor describing the presence of  H2O at grain 
boundary 

-

F(ρ) available energy for subgrain formation Jm-2

Fxy ratio of number of values in the highest fre-
quency  bins of histograms of x-direction and y-
direction of gbd-plots

-

gbd-plots grain boundary distance plots -
∆G Gibbs free energy of activation for by-passing of 

an obstacle
Jm-2

GBMob grain boundary mobility in ELLE_GBM m2 s-1J-1

GBMob 0 base grain boundary mobility in ELLE_GBM m2 s-1J-1

H activation energy Jm-2

i chemical component -
l length of boundary segment in ELLE_GBM m
lscale length scaling factor m
n stress exponent of power law flow -
Nn number of objects of fractal set -
O given vector for splitting direction in 

ELLE_GBM
p chosen vector for node displacement used in 

ELLE_GBM
-

ptrial random vector for trial walks used in 
ELLE_GBM

-

P pressure kbar
Paction probability function in ELLE_GBM -
QGBM grain boundary activation energy Jmol-1

rn linear dimension of a fractal set -

RFbase recovery factor (material dependent) in 
ELLE_GBM

-

RF Effective recovery factor in ELLE_GBM -
Ra aspect ratio of ellipse calculated from orientation 

of grain boundaries
-

Ra aspect ratio of strain ellipse -
Rgbl ratio low/high angle boundary length per unit 

area
-

RX energy threshold value for recrystallization by 
nucleation in ELLE_GBM

Jm-2

RXnucl initial energy threshold value for recrystallization 
by nucleation (material dependent) in 
ELLE_GBM

Jm-2

RΦ ratio of initial to recrystallized grain size -
M grain boundary mobility in general sense m2 s-1J-1

M0 base grain boundary mobility specific to a min-
eral species 

m2 s-1J-1

Min-
NodeSep  

minimum node separation m2

MaxN-
odeSep

maximum node separation m2

Switch maximum distance between joint triple nodes m2

t time s
tscale time scaling factor s
T temperature ¡C
Thsplit energy threshold for splitting in ELLE_GBM Jm-2

r radius of a sphere m
V molar volume of phase molcm-3

v velocity of grain boundary migration - general ms-1

vm mean velocity of a dislocation segment ms-1

vnode velocity of node movement in ELLE_GBM ms-1

Wn kinematic vorticity number -
xx_factor crystallographic misorientation factor in 

ELLE_GBM
-

α angle between the long principal axis of the cal-
culated ellipse and the shear plane

s

β angle between the long principal axis of the strain 
ellipse and the shear plane

-

∆s displacement per time step -
∆γ strain per step -
δ Material constant (Eq. 3.2) -
Π Tilt angle of c-axis of adjacent crystals in 

ELLE_GBM
-

ε surface energy of phase (Gibbs-Thompson equa-
tion)

-

strain rate s-1

γ finite strain -
κ frequency of obstacle jumps s-1

ρ density of mobile dislocations m-2

ρ dislocation density of a polygon stored in Elle 
data file

m-2

ρ (ini-
tial)

initial  dislocation density of a polygon m-2

ρ (new) new  dislocation density of a polygon m-2

ρenergy dislocation energy Jm-2

ρ nucl dislocation density of newly nucleated grain m-2

ρscale dislocation density scaling factor m-2

τscale stress scaling factor Pa
Γ surface energy Jm-2

Γi isotropic surface energy Jm-2

η viscosity Pa s
ηbase base viscosity Pa s
µ chemical potential -
ζ geometric factor (Gibbs-Thompson equation) -
ϕ tilt angle between two adjacent grains ¡
ν frequency of obstacle jumps s-1

σ stress Pa
σb grain boundary energy due to tilt angle between 

boundaries - general
Jm-2


